Объяснение:
y = |x-4| + |x+1|
Итак, имеем функцию с двумя модулями. Под модулями стоят выражения вида g(x)=x-a
На промежутке (a; +∞), g(x) > 0
На промежутке (-∞; a), g(x) < 0
При x=a, g(x) = 0
Этот анализ понять, что наш график будет иметь три состояния, когда оба модуля раскрываются со знаком +, когда оба модуля раскрываются со знаком -, и когда они раскроются с разными знаками
Рассмотрим случай, когда -1 > x. Оба подмодульных выражения примут отрицательные значения. Модули раскроются со знаком минус. y = -(x-4) - (x+1) = -2x + 3Рассмотрим случай, когда -1 <= x < 4. Тогда первый модуль откроется со знаком -, а второй со знаком плюс. y = -(x-4) + x + 1 = 5Рассмотрим случай, когда 4 <= x. Тогда оба модуля откроются со знаком плюс. y = x - 4 + x + 1 = 2x - 3Имеем 3 промежутка, на каждом из которых своя прямая. Такой график иногда называют "корыто". Две боковые прямые образуют "стенки", а "дно" образовано горизонтальной линией.
Осталось построить вышеперечисленные 3 функции, но учитывая их промежуток. График приложен.
f`(x)=-9x² f`(1/3)=-9*1/9=-1 tga=-1 a=135
2) f (x)=0,2x(в 5 степени),а=-1
f`(x)=x^4 f`(-1)=1 tga=1 a=45
3) f (x) =- 0,25x(в 4 степени) , а=0
f`(x)=-x³ f`(0)=0 tga=0 a=0
4) f (x) = -7x³+10х² +х-12, а=0
f`(x)=-21x²+20x+1 f`(0)=1 tga=1 a=45
5) f (x)= 2x-1\3-2x,a=1\2
f`(x)=(6-4x+4x-2)/(3-2x)²=4/(3-2x)² f`(1/2)=4/4=1 tga=1 a=45
6) f (x)=x-1\x-2, a=1
f`(x)=(x-2-x+1)/(x-2)²=-1/(x-2)² f`(1)=-1/1=-1 tga=1 a=135