Нам задана функция графиком данной функции будет гипербола, "сдвинутая" влево на 2. (см. приложенные файлы) свойства: ∪ E(f): ∪ нули функции отсутствуют, функция бесконечно стремится к нулю, но это значение НИКОГДА не достигается. промежутки знакопостоянства: принимает только отрицательные значения на интервале: только положительные на интервале: функция монотонно убывает при x>-2 и при x<-2 функция не является ни четной, ни нечетной функция непериодическая. функция не ограничена ни сверху, ни снизу. претерпевает разрыв в точке х=-2.
1) если подмодульное выражение неотрицательно, то модуль этого выражения равен самому выражению.
|x-3|-3≥0 Уравнение примет вид: |x-3|-3=3-|3-х| или 2|x-3|=6 (|x-3|=|3-х|- модули противоположных выражений равны) |x-3|=3 х-3=3 или х-3=-3 х=6 или х=0 х=6 и х=0 являются корнями уравнения, так как удовлетворяют неравенству |x-3|-3≥0
2) |x-3|-3<0
Уравнение примет вид: -|x-3|+3=3-|3-х| или |x-3|=|3-х| - равенство верно при любом х. Корнем уравнения являются те х, которые удовлетворяют неравенству |x-3|-3<0 или |x-3|<3 -3<x-3<3 0<x<6
графиком данной функции будет гипербола, "сдвинутая" влево на 2. (см. приложенные файлы)
свойства:
E(f):
нули функции отсутствуют, функция бесконечно стремится к нулю, но это значение НИКОГДА не достигается.
промежутки знакопостоянства:
принимает только отрицательные значения на интервале:
только положительные на интервале:
функция монотонно убывает при x>-2 и при x<-2
функция не является ни четной, ни нечетной
функция непериодическая.
функция не ограничена ни сверху, ни снизу. претерпевает разрыв в точке х=-2.