линейная ф-ция имеет вид: У=кХ+в, где "к" и "в" - некоторые числа,
причём "к" не равно 0
Задача состоит в том, чтобы найти эти числа к и в.
Т.к. А(4;-5),то Х=4 У=-5
подставим эти значения в линейную ф-цию У=кХ+в
-5=4к+в
так же поступаем с координатами точки В(-2;19) 19=-2к+в
Получили систему двух уравнений с двумя неизвестными,
вычтем из первого ур-я второе:
-5-19=4к-(-2к)+в-в
-24=4к+2к
-24=6к
к=-4
Подставим полученное значение к=-4 в ур-е: -5=4к+в
и найдём "в " -5=4*(-4)+в
в=-5+16
в=11
Подставим полученные к=-4 и в=11 в У=кХ+в
имеем: У=-4Х+11
3x^ + 2x - 5 = 0
Найдем дискриминант квадратного уравнения:
D = b^ - 4ac = 22 - 4·3·(-5) = 4 + 60 = 64
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = -2 - √64 2·3 = (-2 - 8)÷6 =-10/6 = -5/3 ≈ -1.6666666666666667
x2 = -2 + √64 2·3 = (-2 + 8)÷6 =6/6 = 1
2уравнение:
5x^+3x−2=0
Коэффициенты уравнения:
a=5, b=3, c=−2
Вычислим дискриминант:
D=b2−4ac=32−4·5·(−2)=9+40=49
(D>0), следовательно это квадратное уравнение имеет 2 различных вещественных корня:
Вычислим корни:
x(1,2)=−b±√D÷2a
x1=−b+√D÷2a=−3+7÷2·5=4/10=0,4
x2=−b−√D÷2a=−3−7÷2·5=−10/10=−1
5x2+3x−2=(x−0,4)(x+1)=0
ответ: x1=0,4;x2=−1