и 
Объяснение:
Первый модуль обращается в ноль при x=-2, второй - при
.
Пусть сначала

Тогда уравнение принимает вид
и, очевидно, не имеет решений.
Пусть теперь


Если
, то оба модуля раскрываются с плюсом и уравнение принимает вид:

Полученный x будет корнем уравнения, если он принадлежит рассматриваемому отрезку, то есть если
удовлетворяет системе неравенств

Решение системы: 
Если
, то уравнение принимает вид

Полученный x будет корнем уравнения, если
удовлетворяет системе:

Решение системы: 
Пусть, наконец,
. Тогда уравнение принимает вид

Полученный x будет корнем уравнения, если
удовлетворяет системе:

Эта система не имеет решений.
Теперь пусть
, то есть
.
Если
, то

Система:

Нет решений.
Если
, то

Система:

Решение системы: 
И наконец, если
, то

Система:

Решение: 
Из вышесказанного очевидно, что
При
- два решения
При
- одно решение
При
- нет решений
При
- нет решений
При
- одно решение
При
- два решения
Таким образом, уравнение имеет одно решение при
и 
(x-2)^(x²-6x+8)>(x-2)⁰
1. пусть х-2>1. x>3,
тогда x²-6x+8>0. x²-6x+8=0. x₁=2,x₂=4
+ - +
(2)(4)>x
x∈(-∞;2)U(4;∞)
/ / / / / / / / / / / / / / / /
(2)(3)(4)>x
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
x∈(4;∞)
2. пусть 0<х-2<1, 2<x<3
тогда, x²-6x+8<0
x∈(2;4)
/ / / / / / / / / / / / / /
(2)(3)(4)>x
\ \ \ \ \ \ \
x∈(2;3)
ответ: x∈(2;3)U(4;∞)