М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Артемзайцев2006
Артемзайцев2006
28.09.2020 16:34 •  Алгебра

1) Х2-12х+36=0 2)Х2+3х=4 3)10х2=0,4 4)х+2/: 3 + х2-1/:2=1/3 5)4х=-× ; 6) 7-х2=0​

👇
Открыть все ответы
Ответ:
konoplynkoyanoka
konoplynkoyanoka
28.09.2020

Для начала вспомним все три признака подобности треугольников:

I признак подобия треугольников -  если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.

II признак подобия треугольников - если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то такие треугольники подобны.

III признак подобия треугольников - если три стороны одного треугольника пропорциональны трём сторонам другого, то такие треугольники подобны.

Задача 1

∠ABC = ∠DEF = 90°, ∠ACB = ∠DFE = 55°, значит за первым признаком подобности треугольников ΔABC ~ ΔDEF.

Задача 2

Катеты - это прямые (в прямоугольном треугольнике), которые образуют прямой угол. Гипотенуза - это прямая, которая соединяет два катета. Значит, CV и VN - катеты, а CN - гипотенуза.

Задача 3

В прямоугольном ΔABC катеты AB и BC (AB = 5.9 см, BC = 5 см) образуют угол 90°.

В прямоугольном ΔDEF катеты DE и EF (DE = 5.9 см, EF = 5 см) образуют угол 90°.

Сделаем пропорцию:

\frac{AB}{DE} = \frac{BC}{EF} \\\\\frac{5.9}{5.9} = \frac{5}{5}\\\\1 = 1

Значит эти треугольники подобные по второму признаку подобия треугольников

II признак подобия треугольников простыми словами - если одна сторона первого треугольника в k раз больше соответственной стороны второго, и вторая сторона первого треугольника тоже в k раз больше соответственной стороны второго, и эти две стороны в своих треугольниках создают углы, которые равны между собой, то эти треугольники подобны.

Если эти треугольники подобны, то все их углы равны между собой. Благодаря этому нам без разницы где находится меньшие углы: меньший угол ΔDEF будет находится там же, где и меньший угол ΔABC. Значит, меньший угол ΔDEF = меньшему углу ΔABC = 42°

4,6(61 оценок)
Ответ:
mishka1113
mishka1113
28.09.2020
Решение
первое задание
n^3+3n^2+5n+3 = (n^3+5n)+ (3n^2+3) =(n^3+5n)+ 3(n^2+1)
второе слагаемое делится на 3 при любых n, осталось доказать, что первое слагаемое кратно 3 при любых n
Разобьём все числа на три класса 1) 3к 2) 3к+1 3) 3к+2 Каждое натуральное число принадлежит какому-то одному классу
1) n^3+5n=(3к) ^3+5(3к) = 3 ( 9к^3)+5к) то есть числа этого класса являются делителями данного выражения
2) n^3+5n = (3к+1)^3+5(3к+1)=
27к^3+ 27к^2+9к+1+15к+5 = 27к^3+ 27к^2+24к+6 = 3( 9к^3+ 9к^2+8к+2)
данное выражение делится на 3 и для чисел этого класса
3) n^3+5n = (3к+2)^3+5(3к+2)=
= 27к^3+ 54к^2+36к+8+15к+10 = 27к^3+ 54к^2+51к+18 =3( 9к^3+ 18к^2+17к+6)
данное выражение делится на 3 и для чисел вида (3к+2 )
вывод число (n^3+3n^2+5n+3) делится на 3 при любом n принадлещажее к N
Второе задание
2n^3-3n^2+n = n( 2n^2-3n+1) = n(n-1)(2n-1)
n(n-1)-это произведение двух последовательных натуральных чисел и одно из них делится на 2, значит выражение 2n^3-3n^2+n делится на 2 при любом n принадлещажее к N ( n>1)
Самостоятельно докажи, как в первом примере, что данное выражение делится на 3
для этого нужно доказать делимость на 3 выражения 2n^3+n
4,4(12 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ