∃ - квантор существования, читается "существует"
∀ - квантор всеобщности, читается "для любого"
Рассмотрим высказывания:
∃x ∃y x+y=2
"существует х и существует у, такие что выполняется условие х+у=2"
Истина. Действительно, такие числа существуют, например (1; 1), (2.5; -0.5) и т.д.
∀x ∀y x+y=2
"для любого х и для любого у выполняется условие х+у=2"
Ложь. Очевидно, не любые два числа в сумме дают 2. Например, это условие не выполняется для чисел (0; 1), (2; -0.5) и т.д.
∃x ∀y x+y=2
"существует х, такой что для любого у выполняется условие х+у=2"
Ложь. Предположим, что существует такой х, равный х₀. Тогда, выразив из формулы у, получим: у=2-х₀. Но так как х₀ - некоторая найденная константа, то и выражение (2-х₀) представляет собой константу. Но левая часть соответствует у, который может быть любым. Константа не может равняться одновременно любому выражению. Значит, такого х существовать не может. Например, если х=3, то равенство выполняется только при условии у=2-3=-1, пара (3; -1), ни при каком другом у с тем же х условие не выполняется.
∀x ∃y x+y=2
"для любого х, существует у, такой что выполняется условие х+у=2"
Истина. Выбирая "любой" х мы всегда можем вычислить соответствующее значение у по формуле у=2-х. Например, если х=π, то у=2-π, пара (π; 2-π), если х=0, то у=2-0=2, пара (0; 2), и т.д.
ответ: истинные высказывания 1, 4; ложные высказывания 2, 3
ответ: 5-10*x-5y
Объяснение:
Первый не рациональный)
1) log(3; 126) = log (3; 3^2 *7 * 2) = log(3; 3^2) +log(3; 7) +log(3; 2) =
= 2+log(3; 7) +log(3; 2) = 1/x
2) log(7; 126) = log(7; 3^2) +log(7; 7) +log(7; 2) = 2*log(7; 3) +1 + log(7; 2) = 1/y
log(126; 32) = log(126; 2^5) = 5* log(126; 2) = 5/log(2; 126) ) =
= 5/( log(2; 3^2) +log(2; 7) +log(2; 2) ) = 5/( 2*log(2; 3) +log(2; 7) +1)
log(3; 7) = log(126; 3)/log(126; 7) = x/y
log(7; 3) =y/x
Из равенства 1 следует :
log(2; 3) = 1/( 1/x - 2 -x/y) = x*y/( y -2*x*y -x^2)
Из равенства 2 следует :
log(2; 7) = 1/( 1/y - 2*y/x -1) = x*y/( x -2*y^2 -x*y)
log(126; 32) = 1/( 2*x*y/( y -2*x*y -x^2) + x*y/( x -2*y^2 -x*y) +1 )
Второй рациональный)
log(126; 126) = log(126; 3^2 *7 *2) = log(126; 3^2)+log(126; 7)+log(126; 2) = 2*log(126; 3) +log(126; 7) +log(126; 2) = 1
log(126; 2) = 1-2*x-y
5*log(126; 2) =5-10*x-5*y
log(126; 32) = 5-10*x-5*y
Но значит ли это, что первый ответ неправильный?
Не совсем так.
Дело в том, что если решить, например, такую систему уравнений:
1-2*x-y = 1/( 2*x*y/( y -2*x*y -x^2) + x*y/( x -2*y^2 -x*y) +1 )
126^x +126^y = 10
То одним из решений этой системы будет :
x= log(126; 3)
y=log(126; 7)