Может так: Пусть Х% серебра было во втором сплаве. Тогда (Х+25)% было серебра в первом сплаве. В первом сплаве было 4 кг серебра, значит, приняв за 100% вес первого сплава, получаем, что он весил (100*4)/(Х+25), а второй, соответственно, весил (100*8)/Х. В сплаве, где они вместе стало 4+8=12 кг серебра, что составляет 30%. Получаем (12кг*100%)/30%=40кг — вес третьего сплава. (100*4)/(Х+25)+(100*8)/Х=40 Х^2-5*Х-500=0 Х=25 (второй корень отбрасываем, т.к. он отрицательный). В итоге первый сплав весит 400/(Х+25)=400/50=8 кг, второй 800/Х=800/25=32кг.
Число при делении на 5 дает в остатке 3 только если оно заканчивается на 3 или на 8. Докажем что ни одно целое число в квадрате не заканчивается ни на 3, ни на 8.
если число закачивается на 0, то в квадрате оно заканчивается на 0 если число закачивается на 1, то в квадрате оно заканчивается на 1 если число закачивается на 2, то в квадрате оно заканчивается на 4 если число закачивается на 3, то в квадрате оно заканчивается на 9 если число закачивается на 4, то в квадрате оно заканчивается на 6 если число закачивается на 5, то в квадрате оно заканчивается на 5 если число закачивается на 6, то в квадрате оно заканчивается на 6 если число закачивается на 7, то в квадрате оно заканчивается на 9 если число закачивается на 8, то в квадрате оно заканчивается на 4 если число закачивается на 9, то в квадрате оно заканчивается на 1
Пусть Х% серебра было во втором сплаве. Тогда (Х+25)% было серебра в первом сплаве. В первом сплаве было 4 кг серебра, значит, приняв за 100% вес первого сплава, получаем, что он весил (100*4)/(Х+25), а второй, соответственно, весил (100*8)/Х. В сплаве, где они вместе стало 4+8=12 кг серебра, что составляет 30%. Получаем (12кг*100%)/30%=40кг — вес третьего сплава.
(100*4)/(Х+25)+(100*8)/Х=40
Х^2-5*Х-500=0
Х=25 (второй корень отбрасываем, т.к. он отрицательный).
В итоге первый сплав весит 400/(Х+25)=400/50=8 кг, второй 800/Х=800/25=32кг.