3х-2y=8
6x+3y=9
Первое уравнение домножаем на -2.
-6х+4y=-16
6x+3y=9
Складываем левые и правые части уравнений.
-6x + 4y + 6x + 3y = 9 - 16
7y = -7
y = -1
Подставляем у в первое уравнение.
3x - 2*(-1) = 8
3x = 6
x = 2
ответ: х=2, у=-1
Пусть х (км/ч) - скорость течения, тогда (21 + х) км/ч - скорость по, а (21 - х) км/ч - скорость против течения. Общее время - сумма времени на путь туда и времени на путь обратно.
Время туда 12 / (21 + x)
Время обратно 12 / (21 - x)
Общее время 1ч 10 мин = 70/60 ч = 7/6 ч
12/ (21 + x) + 12/ (21 - x) = 7/6
(12 · 21 + 12x + 12 · 21 - 12x)/(21² - x²) = 7/6
Используя основное свойство пропорции, получаем:
2 · 12 · 21 · 6 = 7 · (21² - х²) | ÷ 7
24 · 3 · 6 = 21² - x²
х² = 9 · 49 - 9 · 48
x² = 9 · (49 - 48)
x² = 9
x₁ = -3 - не соответствует смыслу задачи (x должно быть больше 0)
х₂ = 3
ответ: скорость течения 3 км/ч
Объяснение:
Объяснение:
у=х²+4х-2
Это парабола ,ветви вверх. Координаты вершины
а)х₀=-в/2а, х₀=(-4)/2=-2 , у₀=(-2)²+4*(-2)-2=-6 , (-2; -6).
б) во всех четвертях.
с) х=-2
d)Точки пересечения с осью ох, т.е у=0
х²+4х-2=0
Д=в²-4ас, Д=4²-4*4*(-2)=16+32=48=16*3
х₁=(-в+√Д):2а , х₁=(-4+4√3):2 , х₁=2(-2+2√3):2 , х₁=-2+2√3, (-2+2√3;0)
х₂=(-в-√Д):2а , х₂=(-4-4√3):2 , х₂=2(-2-2√3):2 , х₂=-2-2√3 , (-2-2√3;0)
Точки пересечения с осью оу, т.е. х=0, у=-2 (0;-2)
Доп.точки у=х²+4х-2 :
х: -5 -4 -3 1
у: 3 -2 -5 3
2)у=-х²-2х+6 Это парабола ,ветви вниз.
а)f(2)=-(2)²-2*2+6=-4-4+6=-2,
f(-2)=-(-2)²-2*(-2)+6=-4+4+6=6,
б) точка (-3;к) принадлежит графику функции, значит ее координаты удовлетворяют уравнению у=-х²-2х+6.
к=-(-3)²-2*(-3)+6 , к=-9+6+6 , к=3
Проверка: