Объяснение:
Сначала возводим одночлены в степень, потом у нового одночлена складываем показатели степеней, которые получатся у букв. Показатели степеней у чисел прибавлять не надо!
1) (2/3ab²)³ = 4/9a²b⁴, степень равна 2 + 4 = 6;
2) (3/4a²b³)⁴ = (3/4)⁴a⁸b¹², степень равна 8 + 12 = 20;
3) (4/3m⁵n²)⁵ = (4/3)⁵m²⁵n¹⁰, степень равна 25 + 10 = 35;
4) (2/9m¹⁰n¹³)³ = (2/9)²m²⁰n³⁹, степень равна 20 + 39 = 59;
5) (–0,6a³b⁴)⁴ = +(0,6)⁴a⁸b¹⁶, степень равна 8 +16 = 24;
6) (–1,3x¹⁰y⁴)³ = +1,69x²⁰y⁸, степень равна 20 + 8 = 28 ;
7) (0,02m³n³)² = 0,0004m⁶n⁴, степень равна 6 + 4 = 10;
8) (0,5x³y⁵)³ = 0,125x⁹y¹⁰, степень равна 9 + 10 = 19.
Главное - нарисовать 2 параллельных линии и еще 3 линии, пересекающиеся в одной точке.
Получили 7 точек. А остальные 5 линий должны пересекать все предыдущие, то есть 6-ая линия пересекает эти 5, получаем 5 точек, 7-ая линия пересекает все 6 линий, это 6 точек, 8-ая линия дает 7 точек, 9-ая линия дает 8 точек, и 10 линия дает 9 точек.
Всего 7 + 5 + 6 + 7 + 8 + 9 = 42 точки.
Есть еще вариант, когда одна из параллельных линий является одной из трех, пересекающихся в одной точке. Но тогда будет не 7, а только 3 точки пересечения у первых 4 линий.
5-ая линия добавляет 4 точки, 6-ая - 5 точек и т.д. до 10-ая линия - 9 точек.
Всего 3 + 4 + 5 + 6 + 7 + 8 + 9 = 42.
Все равно получилось 42 точки.