1) y = -3x²+2x+5 = 16/3 -3(x -1/3)² . * * * * Парабола : вершина в точке G(1/3 ;16/3 ), ветви направлены вниз (-3<0 коэфф. x²) , проходит через точки A(1 ;0) и B(5/3;0) (точки пересечения графики функции с осью абсцисс_OX (они и есть корни уравнения -3x²+2x+5 = 0 ) а также через C(0;5)_точка пересечения графики функции с осью ординат_OY . 2) y =2x² +3x +5 =31/8 +2(x+3/4)² ; Парабола : вершина в точке G(-3/4 ;31/8 ) , ветви направлены вверх (2>0),проходит через точку C(0;5). не пересекает ось OX, т.к. уравнения 2x² +3x +5 = 0 не имеет действительных корней дискриминант уравнения_ D =3² -4*2*5 = -31 < 0.
Ординат вершины : 1)в первом случае максимальное значение функции ; 2)во втором случае минимальное значение.
1) 3x² = 0 ⇒ х = 0
2) 9x² = 81 ⇒ х² = 9 ⇒ х₁= -3 и х₂ = 3
3) x² - 27 = 0 ⇒ х² = 27 ⇒ х = ⁺₋ √27 ⇒ х = ⁺₋ 3√3
4) 0.01x² = 4 ⇒ х² = 400 ⇒ х₁= -20 и х₂ = 20
2. Решить уравнения
1) x² + 5x = 0
х(х + 5) = 0
х₁ = 0 или х₂ = -5
2) 4x² = 0.16x
4x² - 0.16x = 0
4х (х - 0,04) = 0
х₁ = 0 или х₂ = 0,04
3) 9x² + 1 = 0
9x² = - 1 - НЕТ решения (корень из отрицательного числа НЕ существует)
3. Решить уравнения
1) 4x² - 169 = 0
4x² = 169
х² =
х₁ = -6,5 или х₂ = 6,5
2) 25 - 16x² = 0
16х² = 25
х₁ = -1,25 или х₂ = 1,25
3) 2x² - 16 = 0
2х² = 16
х² = 8
х₁ = -2√2 или х₂ = 2√2
4) 3x² = 15
х² = 5
х₁ = -√5 или х₂ = √5
5) 2x² =
х² =
х₁ = -0,25 или х₂ = 0,25
6) 3x² =
3х² =
х² =
х₁ = -1