x²-x-12=0
Объяснение:
Если заданы корни x₁ и x₂ квадратного уравнения, то можно составить уравнение различными Приведём два из них.
Используем свойство квадратных уравнений:
Если x₁ и x₂ корни квадратного уравнения, то уравнение имеет вид
(x-x₁)·(x-x₂)=0.
Отсюда, так как x₁= -3 и x₂=4, получим искомое уравнение
(x-(-3))·(x-4)=0 или (x+3)·(x-4)=0.
После раскрытия скобок и упрощения получим:
x²-x-12=0.
Используем теорему Виета для приведённых квадратных уравнений:
Сумма корней приведённого квадратного уравнения x²+p·x+q=0 равна коэффициенту b, взятому с обратным знаком, а произведение корней равно свободному члену q, то есть:
x₁ + x₂= -p и x₁ · x₂= q.
Так как x₁= -3 и x₂=4, то
-p= -3+4 ⇔ -p= 1 ⇔ p= -1
q = (-3) · 4= -12.
Подставляя значения p и q, получим искомое уравнение:
x²-x-12=0.
-3х-9=2х
-3х-2х=9
-5х=9
х=-9/5
х=-1 4/5 или -1,8
1-10х=-5х+10
-10х+5х=10-1
-5х=9
х=-1 4/5 или - 1,8
5(х-6)=2
5х-30=2
5х=2+30
5х=32
х=32/5
х=6 2/5 или 6,4
х+х/5=-12/5
5х+х=-12
6х=-12
х=-2