300 л в минуту или 300·60=18 000 л в час наполняет 1 труба
Пусть вторая наполняет х л в час,третья у л в час.
Пусть сначала первая труба проработала t часов, а вторая и третья вместе в два раза больше, т.е 2 t часов 18 000·t + 2t·(x+y)=500 000 12,5(x+y)=18 000t
Выражаем (х+у) из второго уравнения (x+y)=18 000·t/12,5 и подставляем в первое:
18 000 t + 2t·1 440t=500 00 или 36t²+225t-6250=0 a=36, b=225, c=-6250
D=b²-4ac=225²+4·36·6250=950625=975² t₁=(-225-975)/2<0 t₂=(-225+975)/72=750/72=10 целых 30/72 часа= =10 целых 5/12= 10 целых 25/60=10 часов 25 минут
Чертим трапецию АВСД проводи одну диагональ ВД получается 2 равнобедренных треугольника АДВ и ВСД пусть α угол при основании треугольника который примыкает к верхнему основанию ∠СВД β ∠ВАД тогда из условий трап получаем ∠ВАД+∠АВС=180° β+(β+α)=α+2β=180° из треуг ВСД ∠ВСД=180°-2α=∠АВС=α+β решим систему уравнений α+2β=180° α=180°-2β α=180°-2β α=180°-2β α=180°-144° 180°-2α=α+β 3α+β=180° 3*180°-6β+β=180° 5β=360° β=72° α=36° α+β=36°+72°=108° тогда углы трапеции равны 72°, 108°, 108°, 72°
1 куб дм = 1 л
300 л в минуту или 300·60=18 000 л в час наполняет 1 труба
Пусть вторая наполняет х л в час,третья у л в час.
Пусть сначала первая труба проработала t часов, а вторая и третья вместе в два раза больше, т.е 2 t часов
18 000·t + 2t·(x+y)=500 000
12,5(x+y)=18 000t
Выражаем (х+у) из второго уравнения (x+y)=18 000·t/12,5
и подставляем в первое:
18 000 t + 2t·1 440t=500 00
или
36t²+225t-6250=0
a=36, b=225, c=-6250
D=b²-4ac=225²+4·36·6250=950625=975²
t₁=(-225-975)/2<0
t₂=(-225+975)/72=750/72=10 целых 30/72 часа=
=10 целых 5/12= 10 целых 25/60=10 часов 25 минут
ответ. Первая труба работала10 часов 25 минут