Пусть за х дней второй рабочий может один выполнить всю работу
х+4 дня нужно первому рабочему, чтобы выполнить всю работу
примем всю работу за 1 часть
7/ (х+4) часть работы выполнил первый рабочий за 7 часов
7-2 =5 часов работал второй рабочий
5/х часть работы выполнил второй рабочий за 5 часов
так как они выполнили всю работу, то
7/ (х+4) +5/х =1 или
х² -8х -20 =0 или
х= 10 или х= -2 ( посторонний корень)
ответ
10+4 =14 дней нужно первому рабочему, чтобы выполнить всю работу одному
10 дней нужно второму рабочему, чтобы выполнить всю работу одному
Пусть х км/ч - скорость второго пешехода.
Тогда скорость первого - (х+1) км/ч.
Так как встретились пешеходы в 9 км от пункта А,
путь первого составил 9 км, а путь второго - 10 км.
Значит, второй пешеход провел в пути (10/х) часов,
а первый (9/(х+1)+0,5) часов, полчаса из которых потратил на остановку.
Составим равнение:
10/x = 9/(x + 1) + 1/2
10/x = (18 + x + 1)/([2*(x + 1)]
20x + 20 = 18x + x² + x
x² – x – 20 = 0
x₁ = - 4 не удовлетворяет условию задачи
x₂ = 5
5 (км/ч) - скорость второго пешехода
1) 5 + 1 = 6 (км/ч) - скорость первого пешехода
ответ: 6 км/ч ; 5 км/ч.