Если 2 стула дороже, чем один стол на 100 грн., то 4 стула дороже, чем два стола на 200 грн.
Пусть стол стоит х грн., тогда 3 стола стоят 3х грн., а 4 стула заменим двумя столами и 200 гривнами, тогда стоимость покупки из 3 столов и 4 стульев будет такой
3*х+(2*х+200)=4700
5х=4700-200
5х=4500
х=900, значит, один стол стоит 900 грн., тогда если к этой сумме добавить 100 грн. и разделить на два, получим цену стула, т.е. (900+100)/2=500
Значит, 500 грн. стоит стул.
традиционный.
цена стола х, цена стула у, отсюда система уравнений
2у-х=100
3х+4у=4700
Первое уравнение умножим на 3 и сложим со вторым. Получим
-3х+6у=300
3х+4у=4700
10у=5000, откуда у=5000/10
у=500, стул стоит 500 грн. , тогда стол стоит х=2у-100=2*500-100=900
Стол стоит 900 грн.
5x≥6
x≥1.2
2) (4-x)²=4² - 2*4*x + x² = 16-8x+x²
3) 5x-6=(4-x)²
5x-6=16-8x+x²
-x² +5x+8x -6 -16=0
-x² +13x-22=0
x² -13x+22=0
D=(-13)² - 4*22= 169-88=81
x₁= (13-9)/2=2
x₂=(13+9)/2=11
Проверка корней:
1) х=2 √(5*2-6) +2=4
√4 + 2=4
4=4
х=2 - корень уравнения
2) х=11 √(11*2-6) +11= 4
√16 + 11=4
15≠4
х=11 - не корень уравнения.
Значит, данное уравнение имеет один корень х=2.
Сумма корней равна 2.