катер плыл сначала 30 минут против течения реки, а затем 15 минут по озеру в отсутствии течения. найдите скорость течения реки(км/ч).если собственная скорость катера постоянна и равна 20 км/час, а средняя скорость его движения за весь промежуток времени составила 17 км
x - скорость течения реки
0,5 (20-x ) - путь, пройденный катером против течения реки,
0,25·20=5 - путь, пройденный катером по озеру
(0,5+0,25) - время, которое катер был в пути.
(0,5 (20-x ) + 5)/ (0,5+0,25) = 17 - средняя скорость катера
(10-0,5x+5)/(0,75)=17
(15-0,5x)=17·3/4
60-2x=51 x=9/2 x=4,5
ОДЗ:
{ 2x - 1 > 0
{ x - 2a > 0
Получаем
{ x > 1/2
{ x > 2a
Если 2a > 1/2, то есть a > 1/4, тогда x > 2a
Если 2a < 1/2, то есть a < 1/4, тогда x > 1/2
Решение. Переходим от логарифмов к числам под ними.
2x - 1 = x - 2a
x = 1 - 2a
Если a > 1/4, то x > 2a
1 - 2a > 2a
4a < 1
a < 1/4 - противоречие, здесь решений нет.
Если a < 1/4, то x > 1/2
1 - 2a > 1/2
2a < 1/2
a < 1/4 - все правильно.
Если a = 1/4, то получается
log2 (2x - 1) = log2 (x - 1/2)
log2 (2*(x - 1/2)) = log2 (x - 1/2)
2*(x - 1/2) = x - 1/2
x = 1/2 - не может быть по определению логарифма.
Значит, при a = 1/4 тоже решений нет.
ответ: Если a >= 1/4, то решений нет. Если a < 1/4, то x = 1 - 2a