Пусть исходное число было abcd, тогда записанное в обратном порядке число dcba. По разности 909 можно заметить, что такое возможно, только, если a>d. Распишем по разрядным слагаемым: abcd=1000a+100b+10c+d dcba=1000d+100c+10b+a
По условию: abcd-dcba=909 1000a+100b+10c+d-1000d-100c-10b-a=909999a-999d+90b-90c=909 999(a-d)+90(b-c)=909 111(a-d)-10(c-b)=101 Поскольку a>d, то единственный возможный вариант - это a-d=1, при (a-d)>1, например 2: 222-10(с-b)>101, а значит: 111-10(c-b)=101 10(c-b)=10c-b=1 ⇒a=d+1, из чего видно, что d≤8 c=b+1, из чего видно, что b≤8 Есть еще условие, что сумма цифр кратна 9.a+b+c+d=2d+1+2b+1=2(d+b+1) ⇒ поскольку сумма цифр четная, то остается единственный вариант: 2(d+b)+2=18d+b=8
∠ACB = ∠ADB = x
∠BAC = ∠BDC = y
∠CAD = ∠CBD = z
x:y:z = 5:7:13
∠ABC = ∠ABD + ∠CAD = 50° + z
∠BCD = ∠ACB + ∠ABD = x + 50°
∠CDA = ∠BDC + ∠ADB = y + x
∠DAB = ∠CAD + ∠BAC = z + y
∠ABC + ∠BCD + ∠CDA + ∠BAD = 50 + z + x + 50 + y + x + z + y = 360°
100 + 2z + 2x + 2y = 360
x + z + y = 130
x/y = 5/7
x/z = 5/13
x + 7x/5 + 13x/5 = 130
5x = 130
x = 26
y = 36.4
z = 67.6
∠ABC = 50° + z = 50° + 67.6° = 117.6°
∠BCD = x + 50° = 26° + 50° = 76°
∠CDA = y + x = 36.4° + 26° = 62.4°
∠DAB = z + y = 67.6° + 36.4° = 104°