М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
dpil900dima
dpil900dima
01.07.2022 14:15 •  Алгебра

6. В школе технического творчества 47 учащихся посещают авиамодельный кружок или кружок робототехники.
Известно, что 20 учащихся посещают оба кружка. Дока-
жите, что в работе хотя бы одного из кружков принима-
ют участие не менее 34 учащихся.​

👇
Ответ:
karinkuus
karinkuus
01.07.2022
Добрый день, уважаемые ученики!

Давайте решим задачу вместе.

У нас есть два кружка: авиамодельный и кружок робототехники. По условию, в авиамодельный кружок ходит 47 учащихся, а в кружок робототехники ходит та же самая группа учащихся. Нам нужно доказать, что в работе хотя бы одного из кружков принимают участие не менее 34 учащихся.

Чтобы решить эту задачу, воспользуемся формулой для нахождения количества элементов в объединении двух множеств:

|A ∪ B| = |A| + |B| - |A ∩ B|,

где |A ∪ B| обозначает количество элементов в объединении множеств A и B, |A| обозначает количество элементов в множестве A, |B| обозначает количество элементов в множестве B, а |A ∩ B| обозначает количество элементов в пересечении множеств A и B.

Перед тем, как продолжить, поясню, что означают все эти символы. Множество - это набор элементов. В нашем случае множество A будет представлять собой учащихся авиамодельного кружка, а множество B - учащихся кружка робототехники. Пересечение множеств A и B (обозначается как A ∩ B) представляет собой учащихся, которые ходят и в авиамодельный кружок, и в кружок робототехники.

Из условия задачи известно, что 20 учащихся ходят и в авиамодельный кружок, и в кружок робототехники. То есть у нас есть пересечение множеств A и B.

Теперь запишем то, что нам известно:

|A| = 47 - количество учащихся в авиамодельном кружке,
|B| = 47 - количество учащихся в кружке робототехники,
|A ∩ B| = 20 - количество учащихся в пересечении кружков.

Подставим все значения в формулу:

|A ∪ B| = 47 + 47 - 20 = 74.

Таким образом, из формулы мы получили, что в объединении множеств A и B (т.е. в сумме учащихся авиамодельного кружка и учащихся кружка робототехники) находится 74 учащихся.

Теперь нужно доказать, что хотя бы один из кружков имеет не менее 34 учащихся. Давайте рассмотрим два случая:

1. Пусть количество учащихся в авиамодельном кружке |A| ≥ 34. Тогда мы доказали, что в работе авиамодельного кружка принимают участие не менее 34 учащихся.

2. Пусть количество учащихся в авиамодельном кружке |A| < 34. Тогда количество учащихся в кружке робототехники |B| ≥ 34 (так как 74 - |A| ≥ 34). Тогда мы доказали, что в работе кружка робототехники принимают участие не менее 34 учащихся.

Таким образом, независимо от того, какое количество учащихся посещает каждый из кружков, мы всегда можем доказать, что в работе хотя бы одного из кружков принимают участие не менее 34 учащихся.

Пожалуйста, дайте мне знать, если у вас остались вопросы по решению этой задачи.
4,5(57 оценок)
Проверить ответ в нейросети
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ