Любое рациональное число можно представить в виде дроби, у которой числитель принадлежит целым числам, а знаменатель — натуральным.
Обозначим центр окружности О, а угол DАС через α, тогда
∠DOC = 2α ( центральный, опирается на ту же дугу, что и ∠DAC.
Рассмотрим треугольник DOC:
Он равнобедренный, т.к. OD = OC = R, значит ∠ODC = ∠OCD = (180°-2α)/2 = 90°-α
т.к. BC - касательная, то ∠OCB = 90°
∠DCB = 90° - ∠OCD = 90° - (90° - α) = α = ∠DAC
Рассмотрим ΔABC и ΔCBD:
∠B - общий, ∠DCB=∠CAB = α - по третьему признаку треугольники подобны, значит:
AB/CB = AC/CD
AB = AC*CB/CD = 6*8/4,8 = 10
BC/BD = AC/CD
BD = BC*CD/AC = 6*4,8/8 = 6*0,6 = 3,6
AD = AB - BD = 10 - 3,6 = 6,4
ответ: 6,4
Чтобы определить проходит ли график функции через данные точки, нужно координаты этих точек подставить в уравнение функции и проверить, выполняется ли равенство.
у=3х²-х-2
А (-1; 2)
2=3*(-1)²-(-1)-2
2=3+1-2
2=2
Равенство верно, следовательно график функции проходит через точку А.
В (2; 8)
8=3*2²-2-2
8=12-4
8=8
Равенство верно, следовательно график функции проходит через точку В.
С (0;3)
3=3*0²-0-2
3=-2
Равенство неверно, следовательно график функции не проходит через точку С.
D (1; 4)
4=3*1²-1-2
4=3-3
4=0
Равенство неверно, следовательно график функции не проходит через точку D.
ответ: график функции у=3х²-х-2 проходит через точку А (-1; 2) и В (2; 8).
Объяснение:
Любое рациональное число можно записать в виде несократимого отношения целого числа и натурального, либо
в виде бесконечной периодической десятичной дроби.