М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
EGORchikchik228
EGORchikchik228
03.11.2021 04:10 •  Алгебра

система уравнения любым кроме гаусса. (7x-1)^2-(2x-1)(3x-1) (2x-3)(2x+3)-(5x-1)(5x+1)

👇
Открыть все ответы
Ответ:
Nurik1990
Nurik1990
03.11.2021

Сначала решаем соотв. однородное уравнение, запишем его характеристическое уравнение

\lambda^2-6\lambda+9=0λ

2

−6λ+9=0

имеем случай кратных действительных корней, значит общее решение однородного уравнения

y(x)=C_1*e^{3x}+C_2*x*e^{3x}y(x)=C

1

∗e

3x

+C

2

∗x∗e

3x

Далее применим метод вариации. Тогда

\begin{gathered} \left( < br / > \begin{array}{cc} < br / > e^{3 x} & e^{3 x} x \\ < br / > 3 e^{3 x} & 3 x e^{3 x}+e^{3 x} \\ < br / > \end{array} < br / > \right) * \left( < br / > \begin{array}{c} < br / > C_1'(x) \\ < br / > C_2'(x) \\ < br / > \end{array} < br / > \right)=\left( < br / > \begin{array}{c} < br / > 0 \\ < br / > 9 x^2-12 x+2 \\ < br / > \end{array} < br / > \right) \end{gathered}

<br/>

<br/>e

3x

<br/>3e

3x

<br/>

e

3x

x

3xe

3x

+e

3x

<br/>

<br/>

<br/>C

1

(x)

<br/>C

2

(x)

<br/>

<br/>

=

<br/>

<br/>0

<br/>9x

2

−12x+2

<br/>

<br/>

Откуда получим

C_1'(x)=-e^{-3x}*x*(9x^2-12x+2), < br / > C_2'(x)=e^{-3x}*(9x^2-12x+2)C

1

(x)=−e

−3x

∗x∗(9x

2

−12x+2),<br/>C

2

(x)=e

−3x

∗(9x

2

−12x+2)

Интегрированием находим

C_1(x)=-e^{-3 x}(x^2 - 3 x^3)+A, C_2(x)=e^{-3 x} (2 x - 3 x^2)+BC

1

(x)=−e

−3x

(x

2

−3x

3

)+A,C

2

(x)=e

−3x

(2x−3x

2

)+B

Следовательно общее решение уравнения запишется как (переобозначим константы A и B )

y(x)=(-e^{-3 x}(x^2 - 3 x^3)+C_1)*e^{3x}+(e^{-3 x} (2 x - 3 x^2)+C_2)*x*e^{3x}y(x)=(−e

−3x

(x

2

−3x

3

)+C

1

)∗e

3x

+(e

−3x

(2x−3x

2

)+C

2

)∗x∗e

3x

или

y(x)=C_1*e^{3x}+x*C_2*e^{3x}+x^2y(x)=C

1

∗e

3x

+x∗C

2

∗e

3x

+x

2

Соотв. постоянные для нашей задачи Коши находятся из системы

\left \{ {{y(0)=0} \atop {y'(0)=3}} \right.{

y

(0)=3

y(0)=0

Откуда

\left \{ {{C_1=0} \atop {C_2=3}} \right.{

C

2

=3

C

1

=0

4,6(71 оценок)
Ответ:
katekurmakaeva
katekurmakaeva
03.11.2021
О .
a) 2y(y+2) = 2y^2 + 4   б) 3y2 x(3+y) = 9y^2 x + 3y^2 x

2. Раскройте скобки.
а) (a-3)2 = 2a-6   б) (6x2 + y2)2 = 12x^2 + 2y^2

3. Вычислите значение выражения при z=3.

(z2 + 3z3 - z2) + (z - 1) (z + 1)2 = (9 + 81 - 9) + 32 = 113
4. Найдите значение выражения: p(x)=p1(x)+p2(x), если p1(x)=2z2+3z+2; p2(x)=z3 - 3z3. 

Вариант II. 

1. Выполните умножение.
a) 4z (z - 5);    б) 3x2 y(4 + y).

2. Раскройте скобки.
а) (2a - 1)2;    б) (2x2 + 2x2)2.

3. Вычислите значение выражения при x=2.
x3 + 6x2 - 4x2 + (x - 1) (x - 1)2. 

4. Найдите значение выражения p(x)=p1(x)+p2(x), если p1(x)=3z2+z + 5; p2(x)=2z2 - z. 

Вариант III. 

1. Выполните умножение.
a) 2a (a - 3);    б) 4b2 b(5 + b).

2. Раскройте скобки.
а) (3x - 2)2;    б) (3x2 - 4x2)2.

3. Вычислите значение выражения при x=1.
(3x2 + 4x2 - 5x2) + (x + 1) (x + 1)2.

4. Найдите значение выражения p(x)=p1(x)+p2(x), если p1(x)=10y3 + 10; p2(x)=2y3 - 7. 
4,6(58 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ