1-ый случай, когда a>0, b>0, тогда точка A лежит в 1-ой координатной четверти. Следовательно, точка B лежит в 3-ей координатной четверти и не принадлежит графику функции y=x^2, так как это парабола, и обе ее ветви лежат в 1-ой и 2-ой к.четвертях. 2-ой случай, когда a>0, b<0, тогда точка A лежит в 4-ой координатной четверти. Этого не может быть, так как ветви параболы по условию находятся в 1 и 2-ой к.ч. 3-ий случай, когда a<0, b>0, тогда точка A лежит в 2-ой координатной четверти. Следовательно, точка B лежит в 4-ой координатной четверти и не принадлежит графику функции y=x^2. 4-ый случай, когда a<0, b<0, тогда точка A лежит в 3-ей к.ч. Этого не может быть, так как ветви параболы по условию находятся в 1 и 2-ой к.ч.
Если тебя не просят рассматривать случаи с различными знаками a и b, то доказательство идет другое. Координаты точки A имеют положительные знаки, отсюда следует, что она находится в первой координатной четверти. Координаты точки B имеют отрицательные знаки, отсюда следует, что она лежит в 3-ей координатной четверти, а значит, она не может принадлежать графику функции. Это будет отчетливо видно, если ты посмотришь на график этой функции.
1) Производная функции f(x)=4x-sinx+1 равна f'(x) = 4 - cos(x). Значения функции и производной в заданной точке Хо = 0 равны: f(0) = 4*0 - 0 + 1 = 1 f'(x) = 4 - 1 = 3 Тогда уравнение касательной: Укас = 1 + 3*(Х - 0) = 3Х + 1.
2) Производная функции f(x) = (1 - x) / (x^2 + 8) равна: f'(x) = (x^2 - 2x - 8) / (x^2 + 8)^2. Так как в знаменателе квадрат, то отрицательной производная может быть при отрицательном числителе. Для этого находим критические точки: x^2 - 2x - 8 = 0 Квадратное уравнение, решаем относительно x: Ищем дискриминант:D=(-2)^2-4*1*(-8)=4-4*(-8)=4-(-4*8)=4-(-32)=4+32=36; Дискриминант больше 0, уравнение имеет 2 корня: x_1=(√36-(-2))/(2*1)=(6-(-2))/2=(6+2)/2=8/2=4; x_2=(-√36-(-2))/(2*1)=(-6-(-2))/2=(-6+2)/2=-4/2=-2. Поэтому ответ: f'(x) < 0 при -2 <x < 4.
sinx + cos x + sin2x = 1
sin x + cos x + 2sinx cosx -1=0
sin x + cos x +2sinx cosx -(sin²x+cos²x)=0
(sin x + cos x) + 2sinx cos x - (sin²x+cos²x+2sinx cosx -2sinx cos x)=0
(sin x+ cos x)+2sinx cosx - (sin x + cos x)² +2sinx cosx=0
(sin x + cos x)² + (sinx + cosx)+4sinxcosx=0
Пусть sin x + cos x = t причем (-√2 ≤ t ≤ √2), тогда возведем оба части до квадрата, имеем
(sin x + cos x)² = t²
1+2sinx cosx = t²
2sinxcosx = t²-1
Заменяем
t²+t+2*(t²-1)=0
t²+t+2t²-2=0
3t²+t-2=0
D=1+24 = 25
t1=(-1+5)/6=2/3
t2=(-1-5)/6 = -1
Возвращаем к замене
\begin{gathered}\sin x+\cos =-1\\ \sqrt{2} \sin(x+ \frac{\pi}{4} )=-1 \\ \sin(x+ \frac{\pi}{4} )=- \frac{1}{ \sqrt{2} } \\ x+ \frac{\pi}{4}=(-1)^{n+1} \frac{\pi}{4}+ \pi n,n \in Z\\ x=(-1)^{n+1} \frac{\pi}{4}- \frac{\pi}{4}+ \pi n,n \in Z\end{gathered}
sinx+cos=−1
2
sin(x+
4
π
)=−1
sin(x+
4
π
)=−
2
1
x+
4
π
=(−1)
n+1
4
π
+πn,n∈Z
x=(−1)
n+1
4
π
−
4
π
+πn,n∈Z
\begin{gathered}\sin x+\cos x= \frac{2}{3} \\ \sqrt{2} \sin(x+ \frac{\pi}{4})= \frac{2}{3} \\ \sin (x+ \frac{\pi}{4})= \frac{ \sqrt{2} }{3} \\ x=(-1)^n\arcsin( \frac{ \sqrt{2} }{3} )- \frac{\pi}{4}+ \pi n,n \in Z\end{gathered}
sinx+cosx=
3
2
2
sin(x+
4
π
)=
3
2
sin(x+
4
π
)=
3
2
x=(−1)
n
arcsin(
3
2
)−
4
π
+πn,n∈Z