будем считать, что функция называется f(x)f(x).из условия про нее известно, что f(−4)=2f(−4)=2 (точка a), f(−2)=−4f(−2)=−4 (точка b), f(4)=6f(4)=6 (точка с), а между этими точками (узлами) функция линейна, поэтому для построения графика функции f(x)f(x) нужно узлы соединить отрезками.
функции f(2x)f(2x), f(x/2)f(x/2), f(−0,5x)f(−0,5x), f(−3x)f(−3x), тоже линейны между узлами, поэтому для построения их графиков нужно найти значения в узлах, а потом соединить полученные точки отрезками.
например, f(2x)f(2x), при x=−2x=−2 равно f(−4)=2f(−4)=2, поэтому точка a1(−2,2)a1(−2,2) является узлом функцииf(2x)f(2x). аналогично, f(2x)f(2x), при x=−1x=−1 равно f(−2)=−4f(−2)=−4, поэтому точка b1(−1,−4)b1(−1,−4) - тоже узелf(2x)f(2x), как и точка с1(2,6)с1(2,6). для построения графика функции f(2x)f(2x) нужно пары точек a1,,b1a1,,b1 и b1,,c1b1,,c1 соединить отрезками. для функции f(x/2)f(x/2) аналогично получаем узлы a2(−8,2)a2(−8,2), b2(−4,−4)b2(−4,−4), c2(8,6)c2(8,6) и т.д.
Каждой точке (х; у) графика у = f(x) соответствует единственная точка (х; - у) графика у =- f(x) и наоборот. Точки (х; у) и (х; - у) симметричны относительно оси ОХ. Значит, графики у =f(x) и y = -f(x) симметричны относительно оси ОХ.
Пример 1
Построить график функции у = - .
Решение
Строим график функции у = , а затем строим симметрично относительно оси ОХ.
Симметрия относительно оси ОУ (оси ординат)
Каждой точке (х; у) графика у = f(x) соответствует единственная точка (-х; у) графика у = f(-x), и наоборот. Но точки (х; у) и (-х; у) симметричны относительно оси ОУ, значит, графики у = f(x) и у = f(-x) симметричны относительно оси ОУ.
Пример 2
Построить график функции у = .
Решение
Строим график функции у =, а затем строим симметрично относительно оси ОУ.
Пример 3
Построить график функции у = -
Решение
Выполним ряд последовательных преобразований:
строим график функции у = ;
строим симметрично относительно оси ОУ, т. е. получаем график функции у = ;
строим симметрично относительно оси ОХ, т.е. получаем искомый график функции у = -.
Параллельный перенос (сдвиг) вдоль оси абсцисс
Пусть дан график функции у = f(x).
Чтобы построить график функции у = f(x+a), где а – некоторое данное число, достаточно график функции у= f(x) перенести параллельно направлении оси ОХ на расстояние в положительном направлении, если а<0, и в отрицательном направлении, если а>0.
Пример 4.
Построить графики функций у =(х - 3)² и у =(х + 1)².
Решение
Строим график функции у = х² (пунктиром). Переносим его дважды: в положительном направлении оси ОХ на расстояние, равное 3, и получаем график у = (х – 3)²; в отрицательном направлении оси ОХ на расстояние, равное 1, и получаем график у = (х + 1)².
Параллельный перенос (сдвиг) вдоль оси ординат
Пусть дан график функции у =f(x).
Чтобы построить график функции у = f(x) + a, где а – некоторое данное число, достаточно график функции у = f(x) перенести параллельно оси ОУ на расстояние в положительном направлении, если а >0, и в отрицательном, если а /I>0.
Пример 5.
Построить график функции у = 5+.
Решение
Строим график у = (пунктиром). Переносим его в положительном направлении оси ОХ на расстояние, равное 4, и получаем график у =, а затем переносим в положительном направлении оси ОУ на расстояние, равное 5, получаем искомый график у = 5 +.
ответ:45
Объяснение:
45 да да наеюс