Определим, что первому крану понадобится х часов, чтобы самостоятельно разгрузить баржу, тогда второму понадобиться (х + 9) часов. Весь объём работы обозначим 1 и запишем производительность труда каждого крана и их общую.
1 / х - производительность первого крана;
1 / (х + 9) - производительность второго крана;
1 / 6 - общая производительность.
Составим уравнение:
1 / х + 1 / (х + 9) = 1 / 6
6х + 54 + 6х = х² + 9x
x² - 3x - 54 = 0
D = 225, х1 = -6, х2 = 9.
Отрицательный корень нам не подходит.
х = 9 часов - время работы первого крана самостоятельно;
х +9 = 9 + 9 = 18 часов - время работы второго крана самостоятельно.
Так, так, так. У линейной функции возрастание/убывание зависит от углового коэффицента k : если k>0, функция возрастает, k<0 - убывает. Всё просто. Т.е. в убывании обе функции линейные, k<0 и в первом (k=-7), и во втором . С этим разобрались. Теперь к возрастанию. Я не знаю, в каком Вы классе, постараюсь объяснить доступно. Чтобы определить возрастание/убывание функции, нужно взять значения , два произвольных числа, но . Пусть мы имеем функцию , тогда вычисляем значения функции в этих двух точках, имеем и , так вот, если , тогда функция возрастающая, если же , то она убывающая, но только ПРИ УСЛОВИИ, что она монотонна на всей области определения (т.е. ТОЛЬКО возрастает или ТОЛЬКО убывает), в противном случае мы говорим о ПРОМЕЖУТКАХ возрастания и убывания. 1), т.е. функция возрастающая. А вот задание с не совсем корректно, так как эта функция возрастает только при x>0, при x<0 она убывает, x=0 - Точка экстремума. Если уж брать математический анализ, то легко взять производную и исследовать функцию на "скорость изменения" (алгебраический смысл производной) . Если производная в некоторой точке отрицательная, то функция убывает, если производная положительная, то функция возрастает, если производная равна 0, то это точка экстремума. Очевидно, что при x<0 функция убывает, при x>0 возрастает. Если же доказывать возрастание на промежутке x>0, тогда действуем, как и в первом случае (только не берем значения из ненужного нам промежутка): , функция возрастает, что и требовалось доказать.
9 и 18 часов
Определим, что первому крану понадобится х часов, чтобы самостоятельно разгрузить баржу, тогда второму понадобиться (х + 9) часов. Весь объём работы обозначим 1 и запишем производительность труда каждого крана и их общую.
1 / х - производительность первого крана;
1 / (х + 9) - производительность второго крана;
1 / 6 - общая производительность.
Составим уравнение:
1 / х + 1 / (х + 9) = 1 / 6
6х + 54 + 6х = х² + 9x
x² - 3x - 54 = 0
D = 225, х1 = -6, х2 = 9.
Отрицательный корень нам не подходит.
х = 9 часов - время работы первого крана самостоятельно;
х +9 = 9 + 9 = 18 часов - время работы второго крана самостоятельно.
ответ: 9 и 18 часов.