№1. Делаю только «а», «б» делаете по аналогии. а) Предположим, что графики функций и . Чтобы найти координату точек пересечения приравняем две функции (они пересекаются, значит приравниваем). Получаем: можем найти подставив в выражение первой функции , а можно сделать проще. Так как пересечение будет с прямой , то и точки пересечения будут иметь координату . Итак, получилось две точки пересечения с координатами: . Покажем теперь то же на графике. Смотрите рисунок, приложенный к ответу. №2. а) Дан отрезок (этот отрезок по оси ), найдем значения на концах этого отрезка: Имеем, что первое — наименьшее значение функции на заданном отрезке, а второе — наибольшее. б) Делаем ту же работу: Видим, что первое — наибольшее значение функции на заданном промежутке, а второе — наименьшее.
1) Найдем на данном отрезке критические точки f ′(х) = 0. Получим: f ′(х) = 4 * х; f ′(х) = 0; 4 * х = 0; х = 4 : 0; х = 0. 2) число 0 принадлежит промежутку -3 ≤ x ≤ 2; 3) Вычисляем значения функции в критической точке и на концах промежутка: f (-3) = (-3)^2 - 4 + 1 = 9 - 4 + 1 = 6; f (0) = 0^2 - 4 + 1 = 0 - 4 + 1 = -3; f (2) = 2^2 - 4 + 1 = 4 - 4 + 1 = 1; 4) Из вычисленных значений выбираем наибольшее значение: f (х) = f (-3) = 6. 5) Из вычисленных значений выбираем наименьшее значение: f (х) = f (0) = -3.
а) Предположим, что графики функций
Покажем теперь то же на графике. Смотрите рисунок, приложенный к ответу.
№2.
а) Дан отрезок
Имеем, что первое — наименьшее значение функции на заданном отрезке, а второе — наибольшее.
б) Делаем ту же работу:
Видим, что первое — наибольшее значение функции на заданном промежутке, а второе — наименьшее.