Всего вариантов ровно 1000: от 000 до 999. Чтобы их перебрать все, нужно 4000 сек. 1) Если известно 3 цифры, но неизвестно в каком порядке, то всего 6 вариантов кода: abc, acb, bac, bca, cab, cba. Чтобы их перебрать, нужно 4*6 = 24 секунды. 2) Если известна только одна цифра а, то есть 300 вариантов: от а00 до а99 - 100 вариантов, от 0а0 до 9а9 - 100, и от 00а до 99а - 100. Но, когда мы проверяем варианты от 0а0 до 9а9, то первую цифру а можно пропустить, потому что мы ее уже проверили от а00 до а99. Остается 9*10 = 90 вариантов. А когда мы проверяем от 00а до 99а, то можно пропустить и первую, и вторую цифру а. Остается 9*9 = 81 вариант. Таким образом, остается не 300, а 100+90+81=271 вариант. Это займет 271*4 = 1084 секунды. 3) Сумма трех чисел кода нечетная. Сумма может быть от 0+0+0=0 до 9+9+9=27, всего 28 вариантов, из них 14 четных и 14 нечетных. Значит, сумма будет нечетной в половине случаев. Чтобы их перебрать, нужно 4000/2 = 2000 секунд.
3 -5 3 | 1
2 7 -1 | 8
- от 2 строки отнимаем 1 ст. , умноженную на 3; от 3 ст. отнимаем 1 ст. , умноженную на 2
1 2 1 | 4
0 -11 0 | -11
0 3 -3 | 8
- 2 ст. делим на -11
1 2 1 | 4
0 1 0 | 1
0 3 -3 | 0
от 1 ст. стотнимаем отнимаем 2 ст., умноженную на 2; от 3 ст. отнимаем 2 ст., умножн. на 3
1 0 1 | 2
0 1 0 | 1
0 0 -3 | -3
3 ст. делим на -3
1 0 1 | 2
0 1 0 | 1
0 0 1 | 1
от 1 ст. отнимаем 3 ст., умноженную на 1
1 0 0 | 1
0 1 0 | 1
0 0 1 | 1
х= 1
y= 1
z= 1
3 2 1 | 5
2 3 1 | 1
2 1 3 | 11
1 ст. делим на 3
1 2/3 1/3 | 5/3
2 3 1 | 1
2 1 3 | 11
от 2 ст. отнимаем 1 ст, умноженную на 2; от 3 ст. отнимаем 1 ст, умноженную на 2
1 2/3 1/3 | 5/3
0 5/3 1/3 | -7/3
0 -1/3 7/3 | 23/3
2 ст. делим на 5/3
1 2/3 1/3 | 5/3
0 1 0,2 | - 1/4
0 -1/3 7/3 | 23/3
от 1 ст. отнимаем 2 ст., умноженную на 2/3; к 3 ст. прибавляем 2 ст., умноженную на 1/3
1 0 0,2 | 2,6
0 1 0,2 | - 1/4
0 0 2,4 | 7,2
3 ст. делим на 2,4
1 0 0,2 | 2,6
0 1 0,2 | -1,4
0 0 1 | 3
от 1 ст. отнимаем 3 ст., умноженную на 0,2; от 2 ст. отнимаем 3 ст. , умноженную на 0,2
1 0 0| 2
0 1 0|-2
0 0 1| 3
х= 2 y=-2 z=3