М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
123451527
123451527
09.08.2020 12:36 •  Алгебра

Решите уравнени -3(4-х)=2(х

👇
Ответ:

Поставь лайк этому решению, и отметить как лучшее

x=2

Объяснение:

1) Раскрыть скобки

-3(4-x)=2(x-5)

2) Перенести слагаемые в другую часть уравнения

-12х+3=2х-10

3) Привести подобные члены

Далее вычеслить

3х-2х=–10+12

х=2

Поставь лайк этому решению, и отметить как лучшее

4,4(65 оценок)
Открыть все ответы
Ответ:
Nuraaaykaaa
Nuraaaykaaa
09.08.2020
Для того,чтобы сумма квадратов корней уравнения равнялась какой-либо величине, эти корни должны существовать. Значит, дискриминант нашего уравнения должен быть неотрицательным,т.е
(3p-5)^2-4(3p^2-11p-6)>=0. При таких "p" у исходного уравнения найдутся(возможно, совпадающие) корни x1 и x2. Запишем для них теорему Виета:
x1+x2=-b/a=5-3p
x1*x2=c/a=3p^2-11p-6
Теперь,не вычисляя корней, можно найти сумму их квадратов через "p": x1^2 + x2^2.
Выделим полный квадрат:
(x1+x2)^2-2x1*x2= (5-3p)^2-2(3p^2-11p-6).
По условию, эта сумма квадратов  равна 65.
Получаем:
(5-3p)^2-2(3p^2-11p-6)=65
Решим его:
25-30p+9p^2-6p^2+22p+12-65=0
3p^2-8p-28=0
D=(-8)^2-4*3*(-28)=400
p1=(8-20)/6=-2
p2=(8+20)/6=14/3
Проверим, подставив эти значения "p" в исходное уравнения, чтобы убедиться, что дискриминант неотрицателен.
Проверять здесь не буду из-за экономии времени. Все найденные "p" подходят.
Теперь найдем корни уравнения:
1)p=-2
x^2-11x+28=0
x1=4; x2=7
2)p=14/3
x^2+9x+8=0
x1=-8; x2=-1
ответ: при p=-2 x1=4, x2=7; при p=14/3 x1=-8, x2=-1.
4,5(71 оценок)
Ответ:
ivinaKiyn
ivinaKiyn
09.08.2020
Task/24968563
Решите уравнение √(16 - x ) +√(x-14) =x²-30x +227              ответ: x=15 .

обозначаем f(x) = √(16 - x ) +√(x-14)    
D(f) : { 16 -x ≥0 ; x -14 ≤0 .⇔x∈[14;16]           * * * ООФ * * *
Очевидно  f(x) > 0,  т.к. 16 - x и  x -14  нулевое значение принимают при разных значениях переменного x .  * * * система 16 - x =0=x -14 не имеет решения * * * 
f '(x) =( √(16 - x ) +√(x-14) ) ' =  -1/2√(16 - x) +1/2√(x-14) =
1/2( √(16-x) - √(x -14) ) /2√(16 - x) *√(x-14)
f '(x) =0 ⇒√(16-x) - √(x-14)=0  ⇒x=15.
f ' (x)    +               -
14 15 16
f(x)     ↑      max    ↓           

maxf(x)    = f(15) =2 .   (1)
x∈[14;16]

g(x) =x²-30x +227 =(x-15)² +2 ≥2
min g(x) = g(15) =2 .  (2)

Из (1) и (2) следует  x=15 .

Можно и без применения производной :
f²(x) = (√(16 - x ) +√(x-14) )² =2+2√( (16 - x ) *(x-14) ) ≤ 2+(16 - x +x-14)=4 ,
равенство имеет место ,если 16 - x =x-14, т.е. при x=15.
Затем из f²(x) ≤ 4 ⇒ f(x)  ≤ 2 .                || f(x) >0 || 

2-ой Это не мое решение
( более искусственный, использован  частный случай неравенства Коши) * * * √ab ≤(a+b) /2 при a≥0 ,b ≥ 0 * * *
 ОДЗ :x∈[14;16] 
Оценим обе части равенства 
√(16-x ) =√(16-x )*1 ≤  (17-x)/2    (3) ; равенство, если 16 -x=1 ⇒x=15.
√(x-14)= √(x-14)*1   ≤ (x-13)/2     (4) ; равенство, если x-14=1  ⇒x=15. 
Из (3) и (4)  получаем √(16-x)+√(x-14) ≤ 2  * * * (17-x)/2 +(x-14)/2 =2 * * *

правая часть равенства x²-30x +227 =(x-15)² +2 ≥ 2
равенство опять , если x=15.
2 ≥ √(16-x ) +√(x-14) = x²-30x +227 ≥ 2 
равенство имеет место только при x=15.
4,6(1 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ