Иррациона́льное число́ — это вещественное число, которое не является рациональным, то есть не может быть представлено в виде обыкновенной дроби {\displaystyle \pm {\frac {m}{n}}}{\displaystyle \pm {\frac {m}{n}}}, где {\displaystyle m,n}m,n — натуральные числа. Иррациональное число может быть представлено в виде бесконечной непериодической десятичной дроби.
Иррациональные числа
ζ(3) — ρ — √2 — √3 — √5 — ln 2 — φ,Φ — ψ — α,δ — e — {\displaystyle e^{\pi }}e^{\pi } и π
Другими словами, множество иррациональных чисел есть разность {\displaystyle \mathbb {I} =\mathbb {R} \backslash \mathbb {Q} }{\displaystyle \mathbb {I} =\mathbb {R} \backslash \mathbb {Q} } множеств вещественных и рациональных чисел.
О существовании иррациональных чисел (точнее отрезков, несоизмеримых с отрезком единичной длины), знали уже древние математики: им была известна, например, несоизмеримость диагонали и стороны квадрата, что равносильно иррациональности числа {\displaystyle {\sqrt {2}}}{\sqrt {2}}[1].
К числу иррациональных чисел относятся отношение π окружности круга к его диаметру, число Эйлера e, золотое сечение φ и квадратный корень из двух[2][3][4]; на самом деле все квадратные корни натуральных чисел, кроме полных квадратов, иррациональны.
Иррациональные числа также могут рассматриваться через бесконечные непрерывные дроби. Следствием доказательства Кантора является то, что действительные числа неисчислимы, а рациональные счетны, отсюда следует, что почти все действительные числа иррациональны[5].
4+x>0 x>-4 и 1+2x>0 x>-1/2, т е х>-1/2
4+8x+x+2x²=9
2x²+9x-5=0
x1,2=((-9+-√(81+40))/4= (-9+-11)/4, x1=-5-не удовлетворяет x>-1/2
x2=1/2-ответ
2) 1+x>0 x>-1и 2+x>0 x>-2, т е х>-1
= (по основанию 2)log(1+x)(2+x)=1
x²+x+2x+2=2, x²+3x=0 x1=0, x2=-3-не удовлетворяет x>-1
x=0- ответ
3) x-2>0 x>2 и x+1>0 x>-1, т е x>2
= (по основанию 2)log(x-2)(x+1)=2, x²+x-2x-2=4, x²-x-6=0, x1,2=(1+-√(1+24))/2=(1+-5)/2, x=3- ответ