Замена:x^2+3x=t, тогда: (t+1)(t-3)>=5, значит: t^2-2t-8=0. D=4+32=36. t1=(2+6)/2=4, t2=-2. (t+2)(t-4)>=0. Получили, что t принадлежит от минус бесконечности до минус двух и от четырех до плюс бесконечности. Обратная замена дает два случая: ПЕРВЫЙ: x^2+3x<=-2, тогда: x^2+3x+2<=0, угадывая корни по теореме Виета имеем: (x+1)(x+2)<=0, тогда: х принадлежит отрезку [-2; -1]. ВТОРОЙ: x^2+3x>=4, значит: x^2+3x-4>=0, угадав корни имеем: (x+4)(x-1)>=0, тогда х принадлежит от минус бесконечности до минус 4 включительно и от единицы включительно до плюс бесконечности. ОТВЕТ: х принадлежит (минус бесконечность; -4] U [-2;-1] U [1; плюс бесконечность).
Пусть х кг 1-го раствора(54%-го), а у кг весит 2-ой раствор (61%-ый). Кислоты в 1 р-ре будет 0,54х (кг), а во втором - 0, 61у (кг). Третий раствор (после добавления 10 кг воды) имеет вес, равный (х+у+10), а кислоты там будет 0,46(х+у+10). Если добавили 10 кг 50% раствора кислоты, то значит добавили 5 кг кислоты и 5 кг воды Масса же этого 4-го раствора всё равно будет (х+у+10), а вот кислоты там будет (0,54х+0,61у+5), что равно 0,56(х+у+10). Составляем систему. {0,54x+0,61y=0,46(x+y+10) {54x+61y=46(x+y+10) {8x-15y=460 {0,54x+0,61y+5=0,56(x+y+10) {54x+61y+5=56(x+y+10) {-2x+5y=60 {5y=700 {y=140 {2x=5y-60 {x=380 ответ: 1-го раствора было 380 кг.
(t+1)(t-3)>=5, значит: t^2-2t-8=0. D=4+32=36. t1=(2+6)/2=4, t2=-2. (t+2)(t-4)>=0. Получили, что t принадлежит от минус бесконечности до минус двух и от четырех до плюс бесконечности. Обратная замена дает два случая: ПЕРВЫЙ: x^2+3x<=-2, тогда: x^2+3x+2<=0, угадывая корни по теореме Виета имеем: (x+1)(x+2)<=0, тогда: х принадлежит отрезку [-2; -1]. ВТОРОЙ: x^2+3x>=4, значит: x^2+3x-4>=0, угадав корни имеем: (x+4)(x-1)>=0, тогда х принадлежит от минус бесконечности до минус 4 включительно и от единицы включительно до плюс бесконечности. ОТВЕТ: х принадлежит (минус бесконечность; -4] U [-2;-1] U [1; плюс бесконечность).