М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
простоникр
простоникр
03.10.2022 18:05 •  Алгебра

Вынести за скобки общий множитель с²-с​

👇
Ответ:
olga312boo
olga312boo
03.10.2022

ответ:с(с-1)

Объяснение: И в уменьшаемом,и в вычитаемом есть С. Выносим за скобки,С в квадрате=с×с,следовательно с(с-1). Вычитаемое С=с×1.

4,5(80 оценок)
Открыть все ответы
Ответ:
ппчуп
ппчуп
03.10.2022

1)

\frac{a}{a-sin^22x}=3

a=3(a-sin^22x)

sin^22x=2a

sin2x=\sqrt{2a}

Так как значения синуса не могут быть большими единицы, получаем:

-1<\sqrt{2a}<1

Так как выражение под радикалом и собственно весь радикал не могут быть отрицательными получаем:

0<\sqrt{2a}<1

Откуда получаем:

2a0

a0

2a<1

a<\frac{1}{2}

Объединяя полученные результаты получаем: a∈(0;\frac{1}{2})

ответ: a∈(0;\frac{1}{2})

2)

sinx-cos2x=a^2+2

sinx-(1-2sin^2x)=a^2+2

2sin^2x-sinx-1-a^2-2=0

sinx=t

Получаем квадратное уравнение относительно t:

2t^2-t-1-a^2-2=0

D=1+4*2*(1+a^2-2)=1+8(a^2-1)=8a^2-7

t=\frac{1+\sqrt{8a^2-7}}{2}

t=\frac{1-\sqrt{8a^2-7}}{2}

Исходя из того что данное уравнение должно иметь лишь одно решение получаем, что дискриминант должен быть равен нулю:

8a^2-7=0

a^2=\frac{7}{8}

a=\sqrt{\frac{7}{8}}

a=-\sqrt{\frac{7}{8}}

Но так как нам нужно только одно решение в заданном промежутке получаем:

sinx=\frac{1+\sqrt{8a^2-7}}{2}

x=arcsin(\frac{1+\sqrt{8a^2-7}}{2})+2\pi n

4\pi<arcsin(\frac{1+\sqrt{8a^2-7}}{2})<6\pi

1+\sqrt{8a^2-7}0

неравенство не имеет решений

sinx=\frac{1-\sqrt{8a^2-7}}{2}

x=arcsin(\frac{1-\sqrt{8a^2-7}}{2})+2\pi n

4\pi<arcsin(\frac{1-\sqrt{8a^2-7}}{2})<6\pi

1-\sqrt{8a^2-7}0

8a^2-7<1

a^2<1

(a-1)(a+1)<0

Получаем, что при a∈(-1;1) данное уравнение имеет лишь один корень

ответ: a∈(-1;1)

 

4,5(72 оценок)
Ответ:
ruskei
ruskei
03.10.2022

Вероятность попадания в мишень одного стрелка при одном выстреле для первого стрелка равна 0.8, для второго стрелка – 0.85. Стрелки произвели по одному выстрелу в мишень. Считая попадание в цель для отдельных стрелков событиями независимыми, найти вероятность события А – ровно одно попадание в цель.

Решение.

Рассмотрим событие A - одно попадание в цель. Возможные варианты наступления этого события следующие:

Попал первый стрелок, второй стрелок промахнулся: P(A/H1)=p1*(1-p2)=0.8*(1-0.85)=0.12

Первый стрелок промахнулся, второй стрелок попал в мишень: P(A/H2)=(1-p1)*p2=(1-0.8)*0.85=0.17

Первый и второй стрелки независимо друг от друга попали в мишень: P(A/H1H2)=p1*p2=0.8*0.85=0.68

Тогда вероятность события А – ровно одно попадание в цель, будет равна: P(A) = 0.12+0.17+0.68 = 0.97

Объяснение:

4,6(90 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ