Букв у нас 10, 3 буквы А, по 2 буквы М и Т, и по одной Е, И и К. На первую позицию можно ставить одну из десяти букв, на вторую, одну из девяти и т.д. Получим: 10! Найдём количество которыми можно составить слово математика из данного набора букв при учёте позиции той или иной буквы. Е, И и К могут занимать только одну позицию, а вот А, М и Т можно менять местами. Для М и Т это будет 2! и 2!, для А – 3! С учётом порядка позиции их будет: Тогда вероятность (согласно классическому определению):
Попробуем другой, более простой Перестановки с повторением. Всего у нас Перестановка с повторением, которая даёт нам слово "Математика" всего одна, потому мы получаем вероятность:
|x| - это расстояние от нуля до x, поэтому решением этой системы неравенств (ведь тут не одно неравенство, а два) является объединение двух интервалов (-10; -4)∪(4;10). Концы интервалов в ответ не входят, поэтому подсчитываем количество целых решений внутри; достаточно подсчитать их количество в одном из них и удвоить: 5·2=10
ответ: 10
Замечание 1. Если бы интервал был бы большим, мы бы придумали, как подсчитать количество целых точек на основании концевых точек, но здесь легче их просто пересчитать.
Замечание 2. И все-таки хочется придумать общую формулу. Если интервал (m;n), где m и n - целые числа и m<n, то целых чисел внутри n-m-1.
На первую позицию можно ставить одну из десяти букв, на вторую, одну из девяти и т.д. Получим: 10!
Найдём количество которыми можно составить слово математика из данного набора букв при учёте позиции той или иной буквы.
Е, И и К могут занимать только одну позицию, а вот А, М и Т можно менять местами.
Для М и Т это будет 2! и 2!, для А – 3!
С учётом порядка позиции их будет:
Тогда вероятность (согласно классическому определению):
Попробуем другой, более простой
Перестановки с повторением.
Всего у нас
Перестановка с повторением, которая даёт нам слово "Математика" всего одна, потому мы получаем вероятность: