1. Напишите уравнение прямой, проходящей через заданные точки: A (2; 1) B (-1; 2). [2 балла]
2. Найти координаты и радиус центра круга в соответствии с заданным уравнением: (x-4) 2 + (y + 8) 2 = 36 [1 балл]
3. Очки даны.
а) опираться на координаты потолков; [1 балл]
б) найти длину стен; [3 балла]
в) определить тип (равносторонний, равносторонний, прямоугольный); [2 балла]
г) Рассчитать площадь данного треугольника. [2 балла]
4. Найдите площадь прямоугольника с вершинами A (1; -1) B (0; 1) C (4; 3) и D (5; 1) и докажите, что это прямоугольник. Сделать это:
а) нарисуйте схему координат потолков; [1 балл]
б) найти длину стен; [4 балла]
в) определить и доказать диагонали; [2 балла]
г) Рассчитайте площадь прямоугольника. [2 балла]
Объяснение:
памагитеее
Прежде всего построим графики заданных функций. (См рис1.FIGURE.png)
Далее. Найдем точки пересечения графиков. Из картинки видно, что точки пересечения (Обозначим их А0 и А2) имеют координаты А0(-1; 0) и А2(2; 3).
Убедиться в этом можно, подставив уравнения (1) и (2) поочередно координаты точек и проверить, обращаются ли они в верные равенства.
строго говоря, для нахождения координат точек пересечения в нашем случае решается система уравнений (1), (2):
Два уравнения, два неизвестных.
Приравнивая правые части (1), (2) получаем одно уравнение с одним неизвестным:
Приводим подобные слагаемые.
Решаем полученное уравнение (3)
Соответствующие им значения y1, y2 можно найти, подставив например значения x1, x2 в уравнение (2)
Вот мы и получили две точки А0(x1; y1), A2(x2, y2)
Они нам понадобятся при простановке пределов интегрирования.
Так теперь Разберемся, что получится, если нашу фигуру вращать вокруг
оси OX. Смотрим риснуок 2 (FIGURE_OX.png), На котором изображено поперечное сечение, полученной фигуры вращения. Такая "чаша", со стенками переменной толщины.
В сечении наша исходная фигура (параболический сегмент) зеркально отразилась относительно оси OX. Точки с координатами (x, y) отразились
в точки (x, -y). Соответственно прямая y=x+1 отразилась в y=-x-1, а парабола
Объем "чаши"
где
Если нашу "чашу" без выемки конуса "нашинковать" плоскостями перпендикулярными плоскости рисунка и при этом параллельными плоскости основания конуса, мы разбиваем ее на множество мелких
("блинов") элементарных цилиндров толщиной dx. Объем каждого такого цилиндра будет равен:
Суммарный объем будет равен сумме объемов элементарных цилиндров.
Переходя к пределу при dx⇒0 получаем:
С учетом (7) интеграл (6) равен:
Аналогично объем конуса равен
Проделывая вычисления находим:
Тогда с учетом (4), (8), (10) искомый объем равен:
Вкратце по 2му пункту смотрите рисунок 3 (FIGURE_OY). Тут наша фигура получилась более "хитрая". Придется, дробить область на части
Сам объем будем искать в виде такой суммы:
Объем усеченного "криволинейного конуса" (сечение А9, А1, А2, А8) - Объем конуса (А9, А0, А1) + объем ус. конуса(А2, А3, А5, А7) + объем "криволинейного конуса"(А3, А4, А6, А7) - объем "криволинейного конуса" (А5, А4, А6).
Черт возьми! >5000 символов не лезет. Но надеюсь, принцип ясен.