Пусть вторая труба наполняет бак за х часов, тогда первая наполнит его за х-2 часа. Отсюда производительность первой трубы 1/(х-2), а второй трубы 1/х. Их общая производительность 1/175/60 (2 часа 55 минут - это 175/60 часа) или 60/175. Можно записать уравнение 1/(х-2)+1/х=60/175 1/(х-2)+1/х-60/175=0 (х+(х-2))*175-60х(х-2)=0 350х-350-60х²+120х=0 Для удобства сократим на 10 и умножим на -1 6х²-47х+35=0 D=(-47)-4*6*35=2209-840=1369 x₁=(47-37)/12=10/12=5/6 x₂=(47+37)/12=7 5/6 часа нам не подходит, уж слишком небольшой промежуток времени, в вот 7 часов как раз то, что надо. Значит вторая труба наполняет бак за 7 часов, а первая за 7-2=5 часов.
Надо максимизировать выражение S/t (это, если я все понял правильно, и есть скорость в данной точке). 1)(t^3 + 2t^2 + 5t +8)/t =t^2 + 2t + 5 + 8/t. Чтобы найти максимум данной функции, обратимся к ее производной и найдем точки, в которых она равна 0 либо не существует вообще. Назовем эту функцию f(t). f’(t)=2t+2 - 8/t^2. f’(t)=0. -8/t^2 +2t+2=0 -4/t^2 +t+1=0(домножим на t^2, t=0 не является корнем) t^3+t^2-4=0. А вот здесь я уже сам запутался, как решить это уравнение, но интернет говорит о том, что ответ здесь примерно 1,31. Также нужно еще подумать, что будет с производной при значении t=0. По крайней мере, я навел на правильный мысли, хоть и не решил до конца)
1/(х-2)+1/х=60/175
1/(х-2)+1/х-60/175=0
(х+(х-2))*175-60х(х-2)=0
350х-350-60х²+120х=0
Для удобства сократим на 10 и умножим на -1
6х²-47х+35=0
D=(-47)-4*6*35=2209-840=1369
x₁=(47-37)/12=10/12=5/6 x₂=(47+37)/12=7
5/6 часа нам не подходит, уж слишком небольшой промежуток времени, в вот 7 часов как раз то, что надо.
Значит вторая труба наполняет бак за 7 часов, а первая за 7-2=5 часов.