выражение в квадратном корне должно давать положительный результат, иначе выражение не
имеет смысла
1) √х. х не должен быть –1 или каким-то другим отрицательным числом, поэтому выражение имеет смысл при х (0; +∞)
2) √х². Здесь х также может быть и отрицательным, поскольку он возведён во вторую степень, которая даёт положительный результат в любом случае поэтому: х (–∞; +∞)
3) √–х. х не должен быть положительным, поскольку при положительном х у нас получится отрицательный итог, например при х=1 =√–1, это недопустимо, поэтому х должен быть: х≤0 и значение следующие: х (–∞; 0)
5) √25х. х должен быть 0 или положительное значение:
х≥0, поэтому х (0; +∞)
4) √–3х. х должен быть отрицательным, чтобы выражение давало положительный результат:
х (–∞; –1)
6) √0,01х, х≥0; х (0; +∞)
7)
х ≥ 0; х (–∞; 0)
8)
х может быть как положительным так и отрицательным, поскольку он возведён во вторую степень и значение выражения всегда будет положительным: х (–∞; +∞)
SABCD - пирамида, где ABCD - прямоугольника. O - точка пересечения диагоналей AC и BD. SO - высота пирамиды. С треугольника ABC (угол СВА = 90 градусов) BC = 4 см, АВ = 3 см. По т. Пифагора AC = √(3²+4²) = 5 см. Точка О делит диагонали пополам, тоесть AO = OC = 5/2 = 2.5 см. Диагонали у прямоугольника равны, значит AO = OC = OD = OB = 2.5 см С прямоугольного треугольника SOD (угол SOD = 90 градусов) SO = √(SD² - OD²) = √(6.5²-2.5²) = 6 см
Итак, объем пирамиды равна: V = 1/3 So * h = 1/3 * AB * BC * SO = 1/3 * 3 * 4 * 6 = 24 см³
Объяснение:
выражение в квадратном корне должно давать положительный результат, иначе выражение не
имеет смысла
1) √х. х не должен быть –1 или каким-то другим отрицательным числом, поэтому выражение имеет смысл при х (0; +∞)
2) √х². Здесь х также может быть и отрицательным, поскольку он возведён во вторую степень, которая даёт положительный результат в любом случае поэтому: х (–∞; +∞)
3) √–х. х не должен быть положительным, поскольку при положительном х у нас получится отрицательный итог, например при х=1 =√–1, это недопустимо, поэтому х должен быть: х≤0 и значение следующие: х (–∞; 0)
5) √25х. х должен быть 0 или положительное значение:
х≥0, поэтому х (0; +∞)
4) √–3х. х должен быть отрицательным, чтобы выражение давало положительный результат:
х (–∞; –1)
6) √0,01х, х≥0; х (0; +∞)
7)
х ≥ 0; х (–∞; 0)
8)
х может быть как положительным так и отрицательным, поскольку он возведён во вторую степень и значение выражения всегда будет положительным: х (–∞; +∞)