Пусть х км - расстояние которое велосипедист проехал по лесной дороге, тогда (х-40) км это расстояние которое велосипедист проехал по шоссе. t=2 часа - это время сколько велосипедист ехал по лесной дороге t=1 час-это время сколько велосипедист ехал по шоссе. Скорость велосипедиста по лесной дороге равна расстояние разделить на время (s/t=v) тогда его скорость равна (х/2) км/ч. Скорость велосипедиста по шоссе тогда равна ((40-х)/1)км/ч. В условии задачи сказано, что скорость по шоссе была на 4км/ч больше, тогда мы можем составить уравнение: скорость велосипедиста по лесной дороге плюс 4 км/ч получаем скорость велосипедиста по шоссе. (Х/2+4=40-х) решаем это уравнение домножаем все уравнение на два получаем (х+8=80-2х) получаем 3х=72, х=24 (км) это расстояние которое проехал велосипедист по лесной дороге подставляем х в скорость велосипедиста и находим: (24/2=12 км/ч скорость велосипедиста по лесной дороге; 40-24= 16 км/ч скорость велосипедиста по шоссе) ответ : 16 км/ч по шоссе и 12 км/ч по лесной дороге! Удачи тебе:)
Ну смотри. Площадь прямоугольного треугольника равна половине произведения его катетов S=1/2a•b один катет пусть х другой х+5. По условию задачи составим и решим уравнение 1/2х•(х+5)=42 1/2х^2+2,5х-42=0 домножим все уравнение на 2 чтобы от знаменателей избавиться и получается Х^2+5х-84=0 коэффициент "а" это коэффициент перед х^2, то есть а=1,б-коэффициент перед х=5,с-число=-84 D=b^2-4ac D=25-4•1•(-84)=25+336==361=19^2 X1=-b+корень из D/2a=-5+19/2=7 X2=-b- корень из D/2a=-5-19/2=-12 но этот вариант не подходит, потому что катет не может быть отрицательным Значит один из катетов равен7 а другой Х+5=12 Проверяем: 1/2•12•7=42 6•7=42 42=42 ответ:7;12
3) х1= -√7 , x2=0 , x3= √7
5) Нет пересечения с осью х / корней
6) Нет пересечения с осью х / корней