Область значений функции - это множество значений, которые может принимать зависимая переменная у при переборе всех х (значений независимой переменной х) из области определения функции. Иными словами, это - та часть оси ординат (оси у), на которой можно найти все значения функции. Область значений обозначается, как E(f). Например: линейная функция y=ax+b определяется на всей числовой прямой (х∈(-∞;+∞)), значит область значений зависимой переменной у, тоже определяется по всей оси У (E(f)∈(-∞;+∞). Во вложении, график функции f(x)=2x²+3. Это квадратичная парабола, с ветвями, направленными вверх. По графику видно, что вершина параболы - точка (0;3). Независимая переменная х может принимать любые значения, то есть D(x)∈(-∞;+∞), а минимальное значение функции у=3, значит E(f)=[3;+∞) При определении области значений функции, нужно обратить внимание на ОДЗ переменной х и есть ли, по условию, ограниченный промежуток значений х (в этом случае, область значений находится только в пределах данного промежутка). Зависимая переменная у называется так, потому, что она зависит от независимой переменной, которая может принимать любые значения. Хорошим примером этой зависимости является функция у=а/х. График - гипербола. При определении х, областью допустимых значений (ОДЗ) является вся числовая прямая, кроме х=0, потому. что на ноль делить нельзя. И, если х не может принять значение 0, то у тоже не может принять значение, соответствующее х=0. И, область значений функции у=а/х, является вся числовая прямая оси У, не включая 0: E(f)∈(-∞;0)∪(0;+∞) - в точке х=0, функция терпит бесконечный разрыв.
Для того, чтобы начать решать эту задачу, нам необходимо найти такую последовательность, которая приносила бы нам всегда удачу! Из условия ясно, что начинающий должен ходить первый. Можно предложить такой вариант ходов: Начинающий должен взять один карандаш. Остается 17 штук. Какое бы количество карандашей ни взял противник, обязательно нужно оставить 13 карандашей на столе. По такому же раскладу, надо оставить 9 карандашей, а затем 5. Какое бы количество карандашей не взял соперник, начинающий всегда сможет оставить ему 1 карандаш.
ответ:область определения будет D(g)=(−2;5).
областью определения обратной функции будет область значения прямой.