Вообще говоря, квадратное уравнение ВСЕГДА имеет 2 корня. Они могут быть:
1) разными действительными числами (если дискриминант уравнения положителен);
2) одинаковыми действительными числами (если дискриминант равен нулю);
3) комплексными сопряжёнными числами (если дискриминант отрицателен).
Но если, как это делается в школе, рассматривать только действительные корни, и при этом два равных корня считать одним, то при таких условиях уравнение будет иметь 2 корня только в случае, если дискриминант положителен.
Порассуждаем.
Площадь ромба - это половина произведения его диагоналей. Произведение диагоналей вдвое больше: 96*2 = 192.
Диагонали ромба разбивают его площадь на 4 равных прямоугольных треугольника. Возьмём один такой треугольник. Сторона ромба - гипотенуза такого треугольника (стороны ромба равны). Значит, произведение катетов (катеты - половины диагоналей, так как в ромбе точкой пересечения диагонали разбиваются пополам) этого треугольника в 4 раза меньше произведения диагоналей: 192:4 = 48.
По условию, одна диагональ (а значит, и один из катетов нашего треугольника) в 3 раза больше другой. Значит, половина меньшей диагонали равна √48:3 = 4 см, а половина большей - 4*3 = 12 см.
Итак, у нас есть прямоугольный треугольник с катетами 4 см и 12 см, нужно найти его гипотенузу (напомним себе, что искомая гипотенуза есть сторона ромба). Воспользуемся теоремой Пифагора: 4² + 12² = 160, гипотенуза равна квадратному корню из суммы квадратов катетов: √160 = 4√10.
Таким образом, сторона ромба равна 4√10. Ромб - параллелограмм с равными сторонами, следовательно, все стороны ромба равны друг другу и составляют длину в 4√10 см.
ответ: 4√10 см.
Відповідь:
(x+1)(x+3)(x+5)(x+7)+15=(x²+4x+3)(x+5)(x+7)+15=
=(x³+9x²+23x+15)(x+7)+15=x⁴+16x³+86x²+176x+105+15=
=x⁴+16x³+86x²+176x+120=x⁴+2x³+14x³+28x²+58x²+116x+60x+120=
x³(x+2)+14x²(x+2)+58x(x+2)+60(x+2)=(x+2)(x³+14x²+58x+60)=
=(x+2)(x³+6x²+8x²+48x+10x+60)=(x+2)(x²(x+6)+8x(x+6)+10(x+6))=
=(x+2)(x+6)(x²+8x+10)
Пояснення: