Если прямая проходит через точку, то её координаты удовлетворяют уравнению прямой.
Другими словами, если подставить координаты точки, через которую проходит прямая, в уравнение прямой, мы получим верное равенство.
2х-у=4
А (0; 4)
х=0, у=4
2*0-4 = -4
-4 ≠ 4
Равенство неверное.
Вывод: прямая 2х-у=4 не проходит через точку А (0; 4).
В (2; 0)
х=2, у=0
2*2-0 = 4
4=4 (равенство верно)
Вывод: прямая 2х-у=4 не проходит через точку В (2; 0).
С (-3; -10)
х= -3, у= -10
2*(-3)-(-10) = -6+10 = 4
4=4 (равенство верно)
Вывод: прямая 2х-у=4 не проходит через точку С (-3; -10).
ответ: прямая проходит через точки В и С.
В решении.
Объяснение:
х² - 10х + 9
1) Выделить полный квадрат:
х² - 10х + 9 = 0
Для выделения квадрата разности не хватает квадрата второго числа, удвоенное произведение первого числа на второе показывает, что второе число должно быть равно 5, а квадрат его = 25:
(х² - 10х + 25) - 25 + 9 = 0
25 добавили, 25 надо и отнять.
Свернуть квадрат разности:
(х - 5)² - 16 = 0
2) Разложить трёхчлен на множители.
Найти х₁ и х₂:
(х - 5)² - 16 = 0
(х - 5)² = 1 6
Извлечь корень из обеих частей уравнения:
х - 5 = ±√16
х - 5 = ±4
х₁ = 4 + 5
х₁ = 9;
х₂ = -4 + 5
х₂ = 1;
х² - 10х + 9 = (х - 9)*(х - 1).
Объяснение:
a) 4^11*4^(-9)=4^11/4^9=4^(11-9)=4²=16;
б) x^14/x^9=x^(14-9)=x^5;
в) (a^7)^3=a^21;
г) (ax)^6=a^6*x^6;
д) (a/5)=... ?