(а+1)во 2 степени-(2а+3)во 2 степени=0 Нужно раскрыть скобки по формулам сокращенного умножения Сначала раскроем (а+1)во второй степени,получится а в квадрате +2а+1 Дальше рассмотрим оставшиеся,то есть -(2а+3)во второй степени -(4а в квадрате +12а+9 ) Раскроем скобки и получится -4а в квадрате -12а-9 В итоге получилось а в квадрате +2а+1-4а в квадрате -12а-9 Находим подобные и получается -3 а в квадрате -10 а -8=0 Теперь решаем дискриминантом Д(дискриминант)=корню из четырех ,то есть двум А1= -2 целые одна третья А2= -1
Второе уравнение решается аналогично 25 с в квадрате +80с +64 -с в квадрате +20с-100=0 Что-бы было удобней вычитать Д сократим все на два,и получится 6с в квадрате+25с-9=0 Д=корень из 841 =29 С1=1/3 С2=11/3=3 целых 2/3
Для любого неотрицательного выражения A: (при отрицательном А не имеет смысла) причем <=>
сумма двух неотрицательных выражений равняется 0, если каждое из выражений равно 0, значит данное уравнение равносильно системе уравнений которая очевидно не имеет корней (уравнения имеют разные корни) а значит и исходное уравнение не имеет корней ----------------------------------- иначе в левой части возрастающая функция как сумма двух возрастающих (функция корня и суперпозиция возрастающих функций корня и линейной) ОДЗ функции задающей левую часть а значит а значит данное уравнение не может иметь корней (левая часть заведомо больше правой) ------------- иначе подносим обе части к квадрату решений нет(проверка не нужна так как не нашли корней) ответ: данное уравнение корней не имеет
Решаем методом разделения переменных