ответ: а) 0,2; -2; б) 0,25; в) нет корней, т.к. дискриминант отрицательный; г) 4,5; 0; д) 0,4; -0,4
Объяснение: а) Найдем дискриминант квадратного уравнения:
D = b^2 - 4ac = 9^2 - 4•5•(-2) = 81 + 40 = 121
Т.к. D>0 то, квадратное уравнение имеет два действительных корня:
x1 = -b+ √D / 2a = -9+ √121 /2•5= -9+11/10=2/10=0,2
х2 = -b-√D /2a = -9-√121 /2•5= -9-11/10=-20/10=-2
б) Найдем дискриминант квадратного уравнения:
D = b^2 - 4ac = (-8)^2 - 4·16·1 = 64 - 64 = 0
Т.к. D=0 то, квадратное уравнение имеет один действительный корень:
x = -b/2a= -(-8)/2•16= 8/32=0,25
в) Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-3)2 - 4· 8·1 = 9 - 32 = -23
Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.
г) Найдем дискриминант квадратного уравнения:
D = b^2 - 4ac = (-9)^2 - 4· 2·0 = 81 - 0 = 81
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
х1= -b+ √D / 2a = 9+ √81/2•2= 9+9/4=18/4=4,5
х2 = -b-√D /2a = 9-√81/2•2=9-9/4=0/4=0
д) Найдем дискриминант квадратного уравнения:
D = b^2 - 4ac = 0^2 - 4·25·(-4) = 0 + 400 = 400
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x2 = 0 - √400 / 2·25 = 0 - 20 / 50 = -20 / 50 = -0.4
x1 = 0 + √400 / 2·25 = 0 + 20 / 50 = 20 / 50 = 0.4
(2-a)*2sin(x/2)cos(x/2) + (2a+1)(cos^2(x/2)-sin^2(x/2)) < 25sin^2(x/2)+25cos^2(x/2)
(4-2a)sin(x/2)cos(x/2) + cos^{2}(x/2)(2a+1-25) + sin^{2}(x/2)(-2a-1-25) < 0
Делим все на cos^2(x/2)
(4-2a)*tg(x/2) + (2a-24) + (-2a-26)*tg^2(x/2) < 0
Делим все на -2, при этом меняется знак неравенства
(a+13)*tg^2(x/2) - (2-a)*tg(x/2) - (a-12) > 0
1) При а = -13 будет
-(2 + 13) tg(x/2) - (-13 - 12) > 0
-15 tg(x/2) +25 > 0
15tg(x/2) < 25
tg(x/2) < 5/3
-pi/2 + pi*k < x/2 < arctg(5/3) + pi*k
x1 ∈ (-pi + 2pi*k; 2arctg(5/3) + 2pi*k)
2) При a=/= -13 будет квадратное неравенство относительно tg(x/2)
Замена tg(x/2) = t
(a+13)*t^2 - (2-a)*t - (a-12) > 0
D = b^2 - 4ac = (2-a)^2 - 4(a+13)(-(a-12)) = 4 - 4a + a^2 + 4(a^2+a-156) =
= 5a^2 - 4*156 + 4 = 5a^2 - 620 = 5(a^2 - 124) = 5(a - √124)(a + √124)
При D = 0, то есть при a = -√124 и при а = √124 слева будет полный квадрат, который больше 0 при любых t, кроме
t = tg(x/2) =/= -b/(2a) = (2 - a)/(2a + 26)
x21 =/= 2arctg [(2 + √124)/(-2√124 + 26)] + 2pi*n
x22 =/= 2arctg [(2 - √124)/(2√124 + 26)] + 2pi*n
2 - √124 < 0, а 26 - 2√124 > 0, поэтому x22 < x21
x2 ∈ (-pi + 2pi*n; x22) U (x22; x21) U (x21; pi + 2pi*n)
3) При D > 0, то есть при a < -√124 U a > √124 будет
t1 = tg(x/2) = (2-a - √(5a^2 - 620) ) / (2a + 26)
x31 = 2arctg [(2-a - √(5a^2 - 620) ) / (2a + 26)] + 2pi*m
t2 = tg(x/2) = (2-a + √(5a^2 - 620) ) / (2a + 26)
x32 = 2arctg [(2-a + √(5a^2 - 620) ) / (2a + 26)] + 2pi*m
x3 ∈ (-pi + 2pi*m; x31) U (x32; pi + 2pi*m)
4) При D < 0, то есть при -√124 < a < √124 будет вот что.
У уравнения слева корней нет, поэтому неравенство верно при любом t,
то есть при всех x, при которых определен tg(x/2)
x4 ∈ (-pi + 2pi*h; pi + 2pi*h)
ответ: При а = -13 x1 ∈ (-pi + 2pi*k; 2arctg(5/3) + 2pi*k)
При a = -√124 и при а = √124
x21 =/= 2arctg [(2 + √124)/(-2√124 + 26)] + 2pi*n
x22 =/= 2arctg [(2 - √124)/(2√124 + 26)] + 2pi*n
x2 ∈ (-pi + 2pi*n; x22) U (x22; x21) U (x21; pi + 2pi*n)
При a < -13 U -13 < a < -√124 U a > √124
x31 = 2arctg [(2-a - √(5a^2 - 620) ) / (2a + 26)] + 2pi*m
x32 = 2arctg [(2-a + √(5a^2 - 620) ) / (2a + 26)] + 2pi*m
x3 ∈ (-pi + 2pi*m; x31) U (x32; pi + 2pi*m)
При -√124 < a < √124
x4 ∈ (-pi + 2pi*h; pi + 2pi*h)
Очень непростое неравенство получилось.