М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
AsyaBelova20061
AsyaBelova20061
28.11.2020 03:43 •  Алгебра

Впрогрессии (an): а3=2, а6=1//4 (одна четвертая). найдите знаменатель прогрессии (аn)

👇
Ответ:
malievaanzira05
malievaanzira05
28.11.2020

а3=а1*q во 2-й степени

а6=а1*q в пятой степени

 

Система уравнений:

 

2=а1*q в квадрате

1/4=а1* q в пятой 

 

 

а1=2 разделить на q в квадрате

подставляем в нижнее уравнение системы:

 

1/4=2*q в пятой/q в квадрате

1/4=2*q в кубе

q в кубе=1/(2*4)

q в кубе= 1/8

q= корень кубический из 1/8

q=1/2

4,8(87 оценок)
Открыть все ответы
Ответ:
GetMaths
GetMaths
28.11.2020
2, (1) = (21-2) / 9 = 19/9 , { щоб звернути періодичну дріб в звичайну, треба з числа , що стоїть до другого періоду (21) , відняти число, що стоїть до першого періоду (2), і записати цю різницю чисельником ; в знаменнику написати цифру 9 стільки разів, скільки цифр у періоді (1 цифра) , і після дев'яток дописати стільки нулів , скільки цифр між комою і першим періодом ( 0 цифр) } або нехай 2 , (1) = х , тоді : 100х = 211, (1) 10х = 21 , (1) 90х = 190, { віднімаємо від першого друге } х = 19/9
4,4(20 оценок)
Ответ:
ybibisheva
ybibisheva
28.11.2020

По условию, нужно найти сумму несократимых дробей вида \dfrac{n}{1001}, это означает, что числа n и 1001 - взаимно простые.

S=\left\sum\dfrac{n}{1001}\right|0

Разложим число 1001 на простые множители:

1001=7\cdot11\cdot13

Рассмотрим искомую сумму, без учета условия о несократимости дроби \dfrac{n}{1001}. Тогда получим:

S^*=\dfrac{1}{1001} +\dfrac{2}{1001} +\dfrac{3}{1001} +\ldots+2

S^*=\dfrac{1}{1001} +\dfrac{2}{1001} +\dfrac{3}{1001} +\ldots+\dfrac{2002}{1001}

S^*=\dfrac{1+2+3+\ldots+2002}{1001}

Задача сводится к нахождению суммы 1+2+3+\ldots+2002. Но мы помним, что на самом деле нас интересует сумма только тех чисел от 1 до 2002, которые являются взаимно простыми с числом 1001.

Найдем количество чисел от 1 до 2002, которые не являются взаимно простыми с числом 1001. По отношению к делимости на делители числа 1001, то есть на 7, 11, 13 все такие числа можно разделить на несколько групп:

- делятся на 7, но не делятся на 11, 13;

- делятся на 11, но не делятся на 7, 13;

- делятся на 13, но не делятся на 7, 11;

- делятся на 7, 11, но не делятся на 13;

- делятся на 7, 13, но не делятся на 11;

- делятся на 11, 13, но не делятся на 7;

- делятся на 7, 11, 13.

Количества таких чисел соответственно равно:

D_7=\dfrac{2002}{7} =286

D_{11}=\dfrac{2002}{11} =182

D_{13}=\dfrac{2002}{13} =154

D_{7,11}=\dfrac{2002}{7\cdot11} =26

D_{7,13}=\dfrac{2002}{7\cdot13} =22

D_{11,13}=\dfrac{2002}{11\cdot13} =14

D_{7,11,13}=\dfrac{2002}{7\cdot11\cdot13} =2

Найти итоговое количество чисел, не взаимно простых с 1001 можно по формуле включений-исключений, которая запишется в виде:

D=(D_7+D_{11}+D_{13})-(D_{7,11}+D_{7,13}+D_{11,13})+D_{7,11,13}

Формула подразумевает, что числа, имеющие два делителя из набора (7, 11, 13) были посчитаны среди первых трех слагаемых дважды, поэтому их необходимо один раз отнять. В свою очередь числа, делящиеся на каждое число набора (7, 11, 13) были посчитаны 3 раза со знаком "плюс" и 3 раза со знаком "минус", поэтому их необходимо отдельно прибавить.

D=(286+182+154)-(26+22+14)+2=562

Тогда, количество чисел, взаимно простых с 1001:

\overline{D}=2002-D

\overline{D}=2002-562=1440

Составим следующую конструкцию. запишем числа от 1 до 2002 в столбик, а точнее для дальнейшего удобства - от 0 до 2002:

\begin{array}{ccc}0\\1\\2\\3\\\ldots\\2002\end{array}

Во второй столбик запишем те же самые числа в обратном порядке:

\begin{array}{ccc}0&2002\\1&2001\\2&2000\\3&1999\\\ldots&\ldots\\2002&0\end{array}

Заметим, что сумма чисел в каждой строчке равна 2002.

Нетрудно понять, что два числа в одной строчке либо оба делятся на 7 (аналогично, на 11, на 13), либо оба не делятся. Поскольку 2002 делится на 7, то делимость первого числа в строчке гарантирует делимость второго числа и наоборот.

Тогда, вычеркнем из нашей таблицы 562 строчки, в которых первое число (а значит и второе тоже) не является взаимно простым с числом 1001. Вычеркнем также первую вс строчку (0-2002).

В таблице останется как было определено ранее 1440 чисел в каждом из столбцов. Поскольку мы знаем суммы чисел в каждой строчке, то легко определяется сумма всех чисел в таблице:

S_t=1440\cdot2002

Заметим, что в таблице записан двойной набор тех чисел, что нам нужно сложить в числителе искомой величины.

Тогда:

S=\dfrac{1440\cdot2002}{2\cdot1001} =1440

ответ: 1440

4,7(94 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ