5sin²x + 3sinx × cosx - 4 = 0
5sin²x + 3sinx × cosx - 4×1 = 0
5sin²x + 3sinx × cosx - 4(sin²x + cos²x) = 0
5sin²x + 3sinx × cosx - 4sin²x - 4cos²x = 0
sin²x + 3sinx × cosx - 4cos²x = 0 | : cos²x
tg²x + 3tgx - 4 = 0
Пусть tgx = a, тогда:
a² + 3a - 4 = 0
D = 3² - 4×1×(-4) = 9 + 16 = 25
D>0, 2 корня
x₁ = -3+√25/2×1 = -3+5/2 = 2/2 = 1
x₂ = -3-√25/2×1 = -3-5/2 = -8/2 = -4
tgx = 1 или tgx = - 4
x₁ = π/4 + πn, n∈Z x₂ = arctg(-4) + πn, n∈Z
x₂ = - arctg 4 + πn, n∈Z
ответ: x₁ = π/4 + πn, n∈Z
x₂ = - arctg 4 + πn, n∈Z
Объяснение:
1) f(x)=2e^x+3x² f'(x)=2e^x+6x
2) f(x)= x sinx. f'(x)= sinx+xcosx
3) у = (3х – 1)(2 – х) y'=3(2 – х)+(3х – 1)×(-1)=6-3x-3x+1=-6x+7
4) y=9x²-cosx y'= 18x+sinx
5) y=e^x-x^7 y'= e^x-7x^6
7) f '(1), f(x)=3x2-2x+1. f'(x)=6x-2; f'(1)=6-2=4
8) у = х²(3х^5 – 2) ; х0 = – 1. у' =(3x^7-2x²)'=21x^6-4x
y'(-1)=21+4=25
9) f '( ), f(x)=(2x-1)cosx=2cosx-(2x-1)sinx
10) f '(1), f(x)=(3-x²)(x²+6)= -2x(x²+6)+2x(3-x²) = -4x³ -6x
11) f '(1), f(x)=(x^4-3)(x²+2), f'(x)=3x³ (x²+2)+2x(x^4-3)=5x^5+6x³-6x
4х-15х-4=48-24х
13х=52
х=52:13
х=4
ответ: х=4