Так, так, так. У линейной функции возрастание/убывание зависит от углового коэффицента k : если k>0, функция возрастает, k<0 - убывает. Всё просто. Т.е. в убывании обе функции линейные, k<0 и в первом (k=-7), и во втором . С этим разобрались. Теперь к возрастанию. Я не знаю, в каком Вы классе, постараюсь объяснить доступно. Чтобы определить возрастание/убывание функции, нужно взять значения , два произвольных числа, но . Пусть мы имеем функцию , тогда вычисляем значения функции в этих двух точках, имеем и , так вот, если , тогда функция возрастающая, если же , то она убывающая, но только ПРИ УСЛОВИИ, что она монотонна на всей области определения (т.е. ТОЛЬКО возрастает или ТОЛЬКО убывает), в противном случае мы говорим о ПРОМЕЖУТКАХ возрастания и убывания. 1), т.е. функция возрастающая. А вот задание с не совсем корректно, так как эта функция возрастает только при x>0, при x<0 она убывает, x=0 - Точка экстремума. Если уж брать математический анализ, то легко взять производную и исследовать функцию на "скорость изменения" (алгебраический смысл производной) . Если производная в некоторой точке отрицательная, то функция убывает, если производная положительная, то функция возрастает, если производная равна 0, то это точка экстремума. Очевидно, что при x<0 функция убывает, при x>0 возрастает. Если же доказывать возрастание на промежутке x>0, тогда действуем, как и в первом случае (только не берем значения из ненужного нам промежутка): , функция возрастает, что и требовалось доказать.
Сперва нужно решить это выражение,а потом,в конечный ответ подставить соответствующие числа.начинаем: 3х²-(7ху-4х²)+(5ху-7х²)3х²-(7ху-4х²)+(5ху-7х²)=3х²-7ху+4х²+15х³-21х⁴-7ху+4х²+5ху-7х²=3х²+4х²+4х²-7х²-7ху-7ху+5ху+15х³-21х⁴=11х²-16ху+15х³-21х⁴(теперь нужно их записать с возрастанием степеней)т.е. от самой большой к самой маленькой: -21х⁴+15х³+11х²-16ху как раз теперь будем подставлять значения в числа: х=0,3 у=-10 -21*(0,3)⁴+15*(0,3)³+11*(0,3)²-16*(0,3)*(-10) теперь только осталось подсчитать на калькуляторе и все,обращяя внимание на степень)) если не трудно,то назовите ответ как лучший-ведь действительно было потрачено немало