x2 + 4x + 8 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = 42 - 4·1·8 = 16 - 32 = -16
Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.
4x2 - 12x + 9 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-12)2 - 4·4·9 = 144 - 144 = 0
Так как дискриминант равен нулю то, квадратное уравнение имеет один действительных корень:
x = 122·4 = 1.5
3x2 - 4x - 1 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-4)2 - 4·3·(-1) = 16 + 12 = 28
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = 4 - √282·3 = 23 - 13√7 ≈ -0.21525043702153024
x2 = 4 + √282·3 = 23 + 13√7 ≈ 1.5485837703548635
2x2 - 9x + 15 = 0 Найдем дискриминант квадратного уравнения: D = b2 - 4ac = (-9)2 - 4·2·15 = 81 - 120 = -39 Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.
Это означает, что скорость первого автомобиля на 10км/ч больше скорости второго
x- скорость второго автомобиля
x+10 - скорость первого автомобиля
360/x - время на весь путь второго автомобиля
360/(x+10) - время на весь путь первого автомобиля
360/x-360/(x+10)=1/2⇒
360(x+10-x)*2=x(x+10)⇒
x^2+10x-7200=0
D/4==5^2+7200=7225; √D/4=85
x1=-5+85=80
x2=-5-85=-90<0 - не подходит
x=80 - скорость второго автомобиля
80+10=90 - скорость первого автомобиля