М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Камила070
Камила070
17.05.2021 00:31 •  Алгебра

Тема:"Область определения функции когда именно нужно приравнивать к нулю?
И когда именно решать как систему неравенств

👇
Открыть все ответы
Ответ:
Bananchik26
Bananchik26
17.05.2021
(a-1)x^2-2x-a\ \textgreater \ 0
Если a=1, то получим линейное неравенство:
-2x-1\ \textgreater \ 0
\\\
x\ \textless \ - \frac{1}{2}
Полученный промежуток не включает в себя заданыый x\ \textgreater \ 3.
Рассматриваем случай, когда a \neq 1 - имеем квадратное неравенство.
Заданное неравенство ">0", в зависимости от знака старшего коэффициента общие решения неравенства можно записать в виде:
 - если старший коэффициент больше 0: x\in(-\infty;x_1)\cup(x_2;+\infty)
 - если старший коэффициент меньше 0: x\in (x_3;x_4)
Вывод: необходимо рассмотреть случай с положительным старшим коэффициентом: a-1\ \textgreater \ 0, тогда a\ \textgreater \ 1
Решаем неравенство. Приравниваем левую часть к нулю:
(a-1)x^2-2x-a=0
\\\
D_1=(-1)^2-(a-1)\cdot(-a)=a^2-a+1
Получившийся дискриминант всегда больше 0, т.к. a^2-a+1=a^2-2\cdot \frac{1}{2} + \frac{1}{4} - \frac{1}{4} +1=(a- \frac{1}{2} )^2+ \frac{3}{4}\ \textgreater \ 0

x= \frac{1\pm \sqrt{a^2-a+1} }{a-1} 
\\\
\Rightarrow x\in(-\infty; \frac{1-\sqrt{a^2-a+1} }{a-1} )\cup( \frac{1+\sqrt{a^2-a+1} }{a-1} ;+\infty)
Чтобы получившийся ответ включал интервал х>3, необходимо потребовать выполнение следующего условия:
\frac{1+\sqrt{a^2-a+1} }{a-1} \leq 3
\\\
 \frac{1+\sqrt{a^2-a+1} -3(a-1)}{a-1} \leq 0
\\\
 \frac{4-3a+\sqrt{a^2-a+1} }{a-1} \leq 0
Так как в рассматриваемом случае a-1\ \textgreater \ 0, то можно перейти к следующему неравенству:
4-3a+\sqrt{a^2-a+1} \leq 0
\\\
\sqrt{a^2-a+1} \leq 3a-4
\\\
\begin{cases} a^2-a+1 \leq (3a-4)^2 \\ 3a-4\ \textgreater \ 0 \right \end{cases}
\\\
\begin{cases} a^2-a+1 \leq 9a^2-24a+16 \\ 3a\ \textgreater \ 4 \right \end{cases}
\\\
\begin{cases} 8a^2-23a+15 \geq 0 \\ a\ \textgreater \ \frac{4}{3} \right \end{cases}
\\\
\begin{cases} a\in(-\infty;1]\cup[ \frac{15}{8} ;+\infty) \\ a\ \textgreater \ \frac{4}{3} \right \end{cases}
Итоговое решение с учетом рассматриваемого ограничения a-1\ \textgreater \ 0: a\in[ \frac{15}{8} ;+\infty)
Искомое минимальное целое значение a_{min; \in Z}=2
ответ: 2
4,7(51 оценок)
Ответ:
малина106
малина106
17.05.2021

Объяснение:

ОДЗ : cos2x ; sin2x

cosx ± 1/4 ; sinx ; cosx 0

x ± arccos0,25 + 2πk ; x πk/2 , k ∈ z

2*2cos^2 x - 2 = 1/2cos2x * ( ... )

2cos2x = 1/2cos2x * ( ... )

можно поделить на cos2x, так как cos2x также есть в знаменателе, то есть корни мы не теряем

2 = 1/2 * ( ... )

для удобства делаем замену: пусть 2x = t

2 = 1/2 * (/cost + 1/sint)

2 = /2cost + 1/2sint

(sint + cost) / 2costsint = 2

-2 (-/2 sint - 1/2 cost) / 2costsint = 2

-2 (-sin (π/3) sint - cos(π/3) cost) / 2costsint = 2

выносим минус за скобки и сокращаем 2

а также, используя формула приведения косинуса, только в обратную сторону, делаем все красиво

cos (π/3 - t) / costsint = 2

cos (π/3 - t) = 2costsint

cos (π/3 - t) - sin2t = 0

sin (π/2 - (π/3 - t) - sin2t = 0

sin (π/6 + t) - sin2t = 0

используем sin(t) - sin(s) = 2cos((t + s)/2) * sin ((t - s)/2)

и делим на 2

cos ((π + 18t)/12) * sin((π - 6t)/12) = 0

cos ((π + 18t)/12) = 0

sin ((π - 6t)/12) = 0

t = 5π/18 + 2πk/3

t = π/6 + 2πk

вспоминаем, что t = 2x

x = 5π/36 + πk/3

x = π/12 + πk

k ∈ Z

4,7(70 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ