Если х=√2-1, то должно быть ax^3+bx^2+19x-8=0 (1). находим (√2-1)^2=2-√2+1=3-√2, (√2-1)^3=(3-√2)(√2-1)=3√2-3-4+2√2=5√2-7. подставляем в (1), получаем a(5√2-7)+b(3-2√2)+19(√2-1)-8=0. раскрываем скобки и группируем члены √2(5a-2b)+(3b-7a)=27-19√2. приравниваем рациональные и иррациональные члены √2(5a-2b)=-19√2, (3b-7a)=27. сокращаем √2 и получаем систему уравнений 5a-2b=-19, 3b-7a=27. умножаем первое на 3 и второе на два, получаем 15a-6b=-57, -14a+6b=54. складываем эти равенства и имеем а=-3, тогда b=(5а+19)/2=2. ответ а=-3, b=2.
График функции (гр.ф. далее) у=х^2 выглядит как парабола, ветви которой направлены вверх, начало в точке (0;0), ветви пересекают точки (-1:1) и (1;1) соответственно. Гр.ф у=х^2-2 выглядит ровно так же, как и предыдущий, но опущенный на две клетки вниз, т.е. начало в точке (0;-2), ветви проходят ччерез точки (-1;-2) и (1;-2). Гр.ф. у=1,5х^2 такой же, как и первый график, все точки те же, но дальше ветви будут У'же (чуть ближе располагаться к оси ОУ), чем первый график. Гр.ф. у=-х^2 +3 такой же, как и второй, но не опущенный на две, а поднятый на три клетки вверх и ветви у него будут направлены вниз (при этом ветви всех предыдущих вверх направлены). Т.е. начало в точке (0;3), ветви пересекают точки (-1;2) и (1;2). Гр.ф. у= (х +2)^2 выглядит как парабола, ветви которой направлены вверх. Такая же, как и первая, но сдвинутая на две клетки влево. Т.е. начало в точке (-2;0), ветви проходят через точки (-3;0) и (-1;0).
r=R/2
R=2r
R=2*1\2 = 1
S= 3R^2 * корень из 3/ 4
S= 3*1*корень из 3/4
S=3*корень из 3/4