М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ZnayNeZnay
ZnayNeZnay
28.01.2022 02:05 •  Алгебра

Упростите выражение и найдите его значение
-4(2,5а-1,5)+5,5а-8
При a=-2/9

👇
Ответ:

Держии-----------------------------


Упростите выражение и найдите его значение -4(2,5а-1,5)+5,5а-8 При a=-2/9
4,5(42 оценок)
Открыть все ответы
Ответ:
vovakornev2002
vovakornev2002
28.01.2022
Левая часть неравенства должна существовать, поэтому 
a + x >= 0,
a - x >= 0

Переписываем систему в виде
-a <= x <= a,
|x| <= a
откуда видно, что a >= 0.
Можно сразу записать, что если a < 0, то решений нет.

Тогда обе части исходного неравенства неотрицательные, и можно возводить в квадрат.
a + x + 2sqrt(a^2 - x^2) + a - x > a^2
sqrt(a^2 - x^2) > a(a - 2)/2

Если правая часть отрицательна, то решение неравенства - все значения, при которых корень существует.
a(a - 2)/2 < 0 при 0 < a < 2, так что еще одна часть ответа такова: если 0 < a < 2, то -a <= x <= a.

Осталось рассмотреть случай, когда a(a - 2) >= 0. Тогда вновь можно возводить неравенство в квадрат.
a^2 - x^2 > (a^4 - 4a^3 + 4a^2)/4
x^2 < a^3 (4 - a)/4.

У этого неравенства есть шанс иметь решения, если правая часть строго положительна, поэтому предпоследняя часть ответа: если a = 0 или a >= 4, решений нет. Осталось рассмотреть последний случай 2 <= a < 4.

Заметим, что при таких a правая часть меньше a^2, ведь 
a^3 (4 - a) / 4 / a^2 = a (4 - a) / 4 < 2 * (4 - 2) / 4 = 1 (известно, что квадратичная парабола a (4 - a) / 4 достигает максимального значения в вершине), поэтому все корни существуют, и последняя часть ответа: если 2 <= a < 4, то -sqrt(a^3 (4 - a))/2 < x < sqrt(a^3 (4 - a))/2.

Собираем всё в одно и получаем ответ.
ответ. Если 0 < a < 2, то -a <= x <= a; если 2 <= a < 4, то -sqrt(a^3 (4 - a))/2 < x < sqrt(a^3 (4 - a))/2, для остальных a решений нет.
4,8(64 оценок)
Ответ:
Alexander169
Alexander169
28.01.2022

ответ:

объяснение:

1.

(x+2)(x-3)(x-4) < 0

(-2) (3) (4)

x∈(-∞ -2) u (3   4)

2

(x+5)/(x-2)/(x-1)^2 > =0

[-5] (1) [2]

x∈(-∞ -5] u [2   +∞)

3

(2x+1)/(x-3) < =1

(2x+1)/(x-3) - 1< =0

(2x+1 - x + 3)/(x-3)< =0

(x+4)/(x-3)< =0

[-4] (3)

x∈[-4   3)

4

x/(x-4) + 5/(x-1) +   24/(x-1)(x-4) < =0

(x(x-1) + 5(x-4) + 24)/(x-1)(x-4) < =0

(x^2 - x + 5x - 20 + 24) /(x-1)(x-4) < =0

(x^2-4x+4)/(x-1)(x-4) < =0

(x-2)^2/(x-1)(x-4) < =0

(1) [2] (4)

x∈(1 4)

добро ! получи неограниченный доступ к миллионам подробных ответов

попробуй сегодня

надеюсь если сможешь отметь как лучший

4,7(18 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ