ответ:
1)
пусть х км/ч - скорость пассажирского поезда, тогда скорость товарного поезда составляет х-20 км/ч.
пассажирский поезд пройдет расстояние, равное 120 км, за t=s: v= часов. товарный поезд пройдет это же расстояние за
часов, что на 1 час больше.
составим и решим уравнение:
- = 1 (умножим на х(х-20), чтобы избавиться от дробей)
- =1*x(x-20)
120*х - 120*(х-20)=х²-20х
120х-120х+2400-х²+20х=0
х²-20х-2400=0
d=b²-4ac=(-20)²+4*1*(-2400) = 400+9600=10000 (√10000=100)
x₁ = = 60
x₂ = = -40 - не подходит, поскольку х < 0
скорость пассажирского поезда равна 60 км/ч, тогда скорость товарного составит х-20=60-20=40 км/ч.
проверка:
120: 60=2 (часа) - пассажирский поезд проедет расстояние, равное 120 км.
120: 40=3 (часа) - товарный поезд проедет расстояние, равное 120 км.
3-2=1 час
2
1) пусть х км/ч — скорость второго автомобиля ( х > 0).
2) тогда (х + 10) км/ч — скорость первого.
3) (300 : (х + 10)) ч. — столько времени уходит у первого автомобиля на преодоление пути в 300 км.
4) (300 : х) ч. — за столько времени второй автомобиль проезжает те же 300 км.
5) по условию первый автомобиль тратит на данный путь на 1 час меньше, чем второй, поэтому записываем равенство:
300 : х - 300 : (х + 10) = 1.
6) решаем уравнение:
300 * (х + 10) - 300 * х = х * (х + 10);
300х + 3000 - 300х = х^2 + 10х;
х^2 + 10х - 3000 = 0.
по теореме виета находим, что х1 = -60, х2 = 50
7) так как -60 < 0, то х1 не является решением .
8) значит, х = 50 км/ч — скорость второго автомобиля.
9) узнаем скорость первого:
50 + 10 = 60 км/ч.
ответ: 60 и 50 км/ч.
|x²- x| +|2x-3| < x ;
|x(x-1)| +|2x-3| < x * * * ясно x >0 * * *
- - + - + +
0 1 1,5
Совокупность систем
a)
{0< x < 1 ; {0 < x < 1; { 0< x < 1 ;
{-x² +x -2x +3 < x . { x² +2x - 3 > 0 . { x ∈( -∞; -3) ∪ ( 1;∞).
x ∈ ∅ .
б)
{1≤ x < 1,5 ; { 1≤ x < 1,5 ; {1≤ x < 1,5 ;
{x² - x -2x +3 < x . { x² - 4x + 3 < 0 . { x ∈( 1 ; 3).
x ∈ ( 1;1,5) .
в)
{x ≥ 1,5 ; { x ≥ 1,5 ; { x ≥ 1,5 ;
{x² - x +2x -3 < x . { x² - 3 < 0 . { x ∈(-√3; √3).
x ∈ [1,5 ; √3) .
* * * x ∈ ( 1;1,5) ∪ [1,5 ; √3) = ( 1 ; √3) . * * *
ответ : x ∈ ( 1 ; √3) .
арифметику можно проверить