Подготовка к ЕГЭ
Задать во Войти
АнонимМатематика23 марта 22:16
найдите сумму корней квадратного уравнения х^2-6x+2=0
ответ или решение1
Михайлов Вячеслав
1. Вспомним формулу дискриминанта:
Дискриминант D квадратного трёхчлена a * x2 + b * x + c равен b2 - 4 * a* c.
Корни квадратного уравнения зависят от знака дискриминанта (D):
D > 0 - уравнение имеет 2 различных вещественных корня (х1 = (-b +√D) / (2 * а)), х2 = (-b -√D) / (2 * а));
D = 0 - уравнение имеет 1 корень (х = (-b +√D) / (2 * а));
D < 0 - уравнение не имеет вещественных корней.
2. Найдём дискриминант заданного уравнения:
D = 36 - 4 * 1 *2;
D = 36 - 8;
D = 28.
3. Дискриминант больше 0, значит уравнение имеет два корня:
х1 = (6 +√28) / (2 * 1);
х1 = (6 + 2√7) / 2;
х1 = 3 + √7;
х2 = (6 - √28) / (2 * 1);
х2 = (6 - 2√7) / 2;
х2 = 3 - √7;
4. Найдём сумму корней уравнения:
х1 + х2 = 3 +√7 + 3 -√7 = 6.
ответ: Сумма корней квадратного уравнения равна 6.бъяснение:
система
{x-y=1 {x=1+y {x=1+y {x=1+y
{20/y-20/x=1 {(20x-20y)/xy=1 {20(1+y-y)/ y(1+y)=1 {20/y^2+y = 1
{x=1+y
{ y^2+y-20=0 решим отдельно
y^2+y-20=0
D=1+4*20=81
[y=(-1+9)/2 [y=4
[y=(-1-9)/2 [y=-5
{x=1+y получаем совокупность 2 систем
{ [y=4
{ [y=-5
[ {y=4
[ {x=5
[
[ {y=-5
[ {x=-4