1. Выпадение 2 очков при 1 бросании = 6, при втором бросании, тоже = 6, значит равновозможных исходов 6*6=36
2. Для того, чтобы 2 очка были наименьшими из выпавших, при первом броске должно выпасть 2, при втором броске - любое количество очков, кроме 1. Или при первом броске - любое, кроме 1, а при втором броске - 2 очка.
3. Возможен вариант выпадения 2 очков и при 1 и при 2 броске, поэтому, при подсчете, вариант это учитывается 2 раза.
3. Выпадение 2 очков из всех, кроме 1 очка = 5, при первом, и 5 при втором броске:
количество благоприятных исходов: 5+5-1=9 ((-1) - выпадение 2 очков в каждом из двух бросаний)
4. Вероятность благоприятного исхода: 9/36=1/4=0.25
ответ: 0.25
Пусть среднее из этих трех чисел будет х , тогда первое будет х - 2, а последнее х + 2. Тогда квадрат второго запишем как х², а удвоенное произведение первого и третьего - как 2(х - 2)(х + 2). Учитывая, что х² на 56 меньше, чем 2(х - 2)(х + 2), составим уравнение и решим его:
Применяем формулу разности квадратов:
Второй корень не подходит по условию (нам нужны только натуральные числа), значит, х = 8; тогда три задуманных числа - это 6, 8 и 10.
Проверка:
8² + 56 = 2*6*10
64 + 56 = 120
120 = 120
ответ: искомые числа - это 6, 8, 10.