√√Пусть длина трассы x м, стартуют они в точке А, а встречаются в В. 1-ое тело имеет скорость v1 (м/мин), 2-ое тело v2 < v1 (м/мин). В момент встречи оба тела вместе проехали весь круг, за время t = x/(v1+v2) (мин) При этом 1-ое тело на 100 м больше, чем 2-ое тело. v1*t = v2*t + 100 v1*x/(v1+v2) = v2*x/(v1+v2) + 100 Умножаем все на (v1+v2) v1*x = v2*x + 100(v1+v2) x(v1-v2) = 100(v1+v2) x = 100(v1+v2)/(v1-v2)
1-ое тело вернулось в точку А через 9 мин, то есть за 9 мин оно расстояние, которое до встречи ое тело за t мин. v1*9 = v2*t = v2*x/(v1+v2) 9v1(v1+v2) = v2*x А 2-ое тело вернулось в А через 16 мин, то есть за 16 мин оно расстояние, которое перед этим ое тело за t мин. v2*16 = v1*t = v1*x/(v1+v2) 16v2(v1+v2) = v1*x
Получили систему из 3 уравнений с 3 неизвестными. { x = 100(v1+v2)/(v1-v2) { 9v1(v1+v2) = v2*x { 16v2(v1+v2) = v1*x Подставляем 1 уравнение во 2 и 3 уравнения { 9v1(v1+v2) = v2*100(v1+v2)/(v1-v2) { 16v2(v1+v2) = v1*100(v1+v2)/(v1-v2) Сокращаем (v1+v2) { 9v1 = 100v2/(v1-v2) { 16v2 = 100v1/(v1-v2) Получаем { 0,09v1 = v2/(v1-v2) { 0,16v2 = v1/(v1-v2)
X^2+7x+10<0, y=x^2+7x+10 - квадратичная функция (парабола). Находим корни по дискриминанту или по теореме Виета (Я нашёл по дискриминанту). D=b^2-4ac,D=7^2-4*1*10=49-40=9=3^2. x1= -b+√D/2a=-7+3/2= -2. x2=-b-√D/2a=-7-3/2= -5. После того,как мы нашли корни (x1,x2),отмечаем точки -5 и -2 на координатной прямой,на оси x,конечно же,после чего рисуем квадратичную функцию (параболу) : y=x^2+7x+10; при a>0,D>0. Обязательно ветви вверх,так как a>0. За пределами ветвей параболы или её области,значения удовлетворяют решению "больше" (>,+),так как нам нужны значения "меньше" (-,<),то ответом будет область не за ветвями параболы,то есть интервал (-5;-2) (знак нестрогий,поэтому интервал и скобки круглые).ответ : x∈ (-5;-2),или ответ можно записать так ; -5<x<-2.
Дробь не имеет смысла, когда знаменатель равен нулю.
16t²+56t+49=0
D=56²-4×16×49=3136-3136=0
Если дискриминант равен нулю, пользуемся формулой х=-b/2a, где х - корень уравнения. В нашем случае, х=t.
t=-56/(16×2)
t=-56/32
t=-1,75
ответ: при t=-1,75 дробь не имеет смысла.