1.
Тут легко выразить x из первого уравнения. Нужно лишь перенести 2y
x = -2y
Теперь подставляем это во второе
5(-2y) + y = -18
-9y = -18
y = 2
Помним, что x = -2y ===> x = -4
Для самопроверки можно подставить в первое, в других номерах делать не буду, но тебе советую (не конкретно в этих, а вообще)
-4 + 4 = 0 Все верно
x = -4; y = 2
2.
Здесь тоже легко выразить x из первого.
2x = 10 + 5y
Подставляем в первое, умножаем не на 4, а на 2, т.к. у нас уже 2x.
2(10 + 5y) - y = 2
20 + 10y - y = 2
18 = -9y
y = -2
Подставляем в 2x = 10 + 5y > 2x = 10 - 10 ===> x = 0
x = 0; y = -2
3. Тут конечно тоже можно выразить x и т.д., но ради разнообразия решим через алгебраическое сложение уравнений. Складываем все, что левее равно в первом, с тем, что левее равно во втором, ну и с тем, что правее соответственно. Знаки не меняем!
x - 2y + y - x = 1 - 2
-y = -1
y = 1
Теперь ищем x из первого.
x - 2 = 1
x = 3; y = 1
4. Тут тоже подойдет метод алгебраического сложения. Вообще, в этом номере все можно решить, выражая одну из переменных через метод алг-го сложения удобнее. Есть системы, где выразить переменную сложнее. Часто именно сложением или вычитание (это все метод алгебраического сложения) решить.
x + y + x - y = -3 - 1
2x = -4
x = -2
Подставляем в первое.
-2 + y = -3
y = - 1
x = -2; y = -1
Все. Если будут во пиши.
p.s. Отметь, как лучший, если не сложно ;)
4y^2 + 15y - 4 = 0
(y + 4)(4y - 1) = 0
y1 = -4 - не подходит
y = 1/4 = (1/4)^x
x = 1
2) 3^x = -x + 1 = 1 - x
3^x > 0 при любом х, поэтому 1 - x > 0; x < 1
При x = 0 будет 3^0 = 1 - 0 = 1 - подходит
При x ∈ (0; 1) будет 3^x > 1; а 1 - x < 1 - корней нет
При x < 0 будет 3^x < 1; 1 - x > 1 - корней нет
x = 0
3) 3^x*9*3^(1/5) - ?
Здесь нет ни уравнения, ни неравенства
4) 2^(4x) >= 16
2^(4x) >= 2^4
4x >= 4
x >= 1
5) (1/4)^(2x-5) > 1/8
(1/2)^(4x-10) > (1/2)^3
Функция y = (1/2)^x - убывающая, потому что 1/2 < 1.
При переходе от степеней к показателям знак неравенства меняется.
4x - 10 < 3
x < 13/4
6) 5^(2x-3) - 2*5^(x-2) > 3
1/125*5^(2x) - 2/25*5^x - 3 > 0
Умножаем всё на 125
5^(2x) - 10*5^x - 375 > 0
Замена 5^x = y > 0 при любом x
y^2 - 10y - 375 > 0
(y - 25)(y + 15) > 0
y = -15 < 0 - нет корней
y = 25 = 5^x
x = 2